
DIFFUSION MODELS: MATH AND DERIVATIONS

Wenhan Gao
Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA

wenhan.gao@stonybrook.edu

1 Denoising Diffusion Probabilistic Models (DDPM)

1.1 Forward Process

The forward process or diffusion process is a Markov chain that gradually adds Gaussian noise to the data according to:

q (xt | xt−1) := N (xt;
√
αtxt−1, (1− αt) I) ,

where αt := 1− βt, βt ∈ (0, 1) is the noise schedule with β0 = 0 and β1 = 1.

• To sample, xt =
√
αtxt−1 +

√
1− αtϵ, ϵ ∼ N (0, I).

As a Markov chain, we can also write

q (xt | x0) = N
(
xt;
√
ᾱtx0, (1− ᾱt) I

)
with ᾱt :=

t∏
s=1

αs.

• To sample, xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I).

Proof. By induction,
xt =

√
αtxt−1 +

√
1− αtϵt

=
√
αt

(√
αt−1xt−2 +

√
1− αt−1ϵt−1

)
+
√
1− αtϵt

=
√
αt−1αt︸ ︷︷ ︸

µ=
√∏t

s−t−1 αs

xt−2 +
√
αt (1− αt−1)ϵt−1 +

√
1− αtϵt︸ ︷︷ ︸

σ2=1−
∏t

s−t−1 αs

.

1.2 Reverse Process

The joint distribution pθ (x0:T) is called the reverse process, and it is defined as a Markov chain with learned Gaussian transitions starting
at p (xT) = N (xT ;0, I), where

pθ (x0:T) := p (xT)

T∏
t=1

pθ (xt−1 | xt) , pθ (xt−1 | xt) := N (xt−1;µθ (xt, t) ,Σθ (xt, t)) .

1.3 Optimization Objective: ELBO

We aim to maximize the log-likelihood log pθ (x0), which can be reformulated as maximizing the variational lower bound:

Eq(x1|x0) [log pθ (x0 | x1)]︸ ︷︷ ︸
L0: reconstruction term

−DKL (q (xT | x0) ∥p (xT))︸ ︷︷ ︸
LT : prior matching term

−
T∑

t=2

Eq(xt|x0) [DKL (q (xt−1 | xt,x0) ∥pθ (xt−1 | xt))]︸ ︷︷ ︸
Lt−1: denoising matching terms

. (1.1)

• The posterior transition distribution q (xt−1 | xt,x0) = N
(
xt−1; µ̃t (xt,x0) , β̃tI

)
with

µ̃t (xt,x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt and β̃t :=

1− ᾱt−1

1− ᾱt
βt. (1.2)

Note: Diffusion Models

Proof of the Variational Lower Bound. This proof is adopted from Luo (2022) with added details.

log pθ (x0) = log

∫
q (x1:T | x0)

pθ (x0:T)

q (x1:T | x0)
dx1:T

≥ Eq(x1:T |x0)

[
log

pθ (x0:T)

q (x1:T | x0)

]
= Eq(x1:T |x0)

[
log

p (xT)
∏T

t=1 pθ (xt−1 | xt)∏T
t=1 q (xt | xt−1)

]

= Eq(x1:T |x0)

[
log

p (xT) pθ (x0 | x1)
∏T

t=2 pθ (xt−1 | xt)

q (x1 | x0)
∏T

t=2 q (xt | xt−1)

]

= Eq(x1:T |x0)

[
log

p (xT) pθ (x0 | x1)
∏T

t=2 pθ (xt−1 | xt)

q (x1 | x0)
∏T

t=2 q (xt | xt−1,x0)

]

= Eq(x1:T |x0)

log p (xT) pθ (x0 | x1)

q (x1 | x0)
+ log

T∏
t=2

pθ (xt−1 | xt)
q(xt−1|xt,x0)q(xt|x0)

q(xt−1|x0)


= Eq(x1:T |x0)

[
log

p (xT) pθ (x0 | x1)

q (x1 | x0)
+ log

q (x1 | x0)

q (xT | x0)
+ log

T∏
t=2

pθ (xt−1 | xt)

q (xt−1 | xt,x0)

]

= Eq(x1:T |x0)

[
log

p (xT) pθ (x0 | x1)

q (xT | x0)
+

T∑
t=2

log
pθ (xt−1 | xt)

q (xt−1 | xt,x0)

]

= Eq(x1:T |x0) [log pθ (x0 | x1)] + Eq(x1:T |x0)

[
log

p (xT)

q (xT | x0)

]
+

T∑
t=2

Eq(x1:T |x0)

[
log

pθ (xt−1 | xt)

q (xt−1 | xt,x0)

]

= Eq(x1|x0) [log pθ (x0 | x1)] + Eq(xT |x0)

[
log

p (xT)

q (xT | x0)

]
+

T∑
t=2

Eq(xt,xt−1|x0)

[
log

pθ (xt−1 | xt)

q (xt−1 | xt,x0)

]

= Eq(x1|x0) [log pθ (x0 | x1)]︸ ︷︷ ︸
reconstruction term

−DKL (q (xT | x0) ∥p (xT))︸ ︷︷ ︸
prior matching term

−
T∑

t=2

Eq(xt|x0) [DKL (q (xt−1 | xt,x0) ∥pθ (xt−1 | xt))]︸ ︷︷ ︸
denoising matching term

Proof of the Posterior Transition Distribution. Note that

q(xt−1|x0) = N (xt−1;
√
ᾱt−1x0, (1− ᾱt−1) I) ,

and
q (xt | xt−1) = N (xt;

√
αtxt−1, (1− αt)I)

xt =
√
αtxt−1 +

√
1− αtϵ, ϵ ∼ N (0, I)

xt−1 =
1
√
αt

xt −
√
1− αt√
αt

ϵ ⇒ xt−1 ∼ N
(

1
√
αt

xt,
1− αt

αt
I

)
.

Note that this is just a reparameterization; it does not define q(xt−1 | xt). Then,

q (xt−1 | xt,x0) ∝ N (xt−1;
√
ᾱt−1x0, (1− ᾱt−1) I)︸ ︷︷ ︸

Prior prediction from x0

· N
(
xt−1;

1√
αt
xt,

1−αt

αt
I
)

︸ ︷︷ ︸
Posterior estimate from xt

,

which can be solved by the product of Gaussians formula:

N (x;µ1,Σ1) · N (x;µ2,Σ2) ∝ N (x;µ,Σ), with Σ =
(
Σ−1

1 +Σ−1
2

)−1
and µ = Σ

(
Σ−1

1 µ1 +Σ−1
2 µ2

)
.

2

Note: Diffusion Models

Remark 1.1. At a high level, x0 and xt define a trajectory, and our goal is to determine the probability of xt−1 along this path. Intuitively,
whether we move forward from x0 to xt−1 or backward from xt to xt−1, we should arrive at the same point xt−1. Therefore, this
probability can be expressed as the product of two distributions, one conditioned on x0 and the other on xt.

On page 12 of Luo (2022), a direct proof is provided. We provide an alternative proof, as our proof might give a better intuitive idea in the
remark above. Moreover, our proof is actually equivalent to Luo (2022). To see this,

q (xt−1 | xt,x0) =
q (xt | xt−1,x0) q (xt−1 | x0)

q (xt | x0)
∝ q (xt | xt−1) · q (xt−1 | x0) ,

which is also a product of two Gaussians; however, as the unknown is xt−1. We apply a simple reparameterization

q (xt | xt−1) = N (xt;
√
αtxt−1, (1− αt) I) ∝ exp

{
−

[(
xt −

√
αtxt−1

)2
2 (1− αt)

]}

= exp

{
−
[
x2
t − 2

√
αtxtxt−1 + αtx

2
t−1

2 (1− αt)

]}

= exp

−
x2

t−1 − 2 1√
αt
xtxt−1 +

1
αt
x2
t

2
(

1−αt

αt

)


= exp

−

(
xt−1 − 1√

αt
xt

)2
2
(

1−αt

αt

)

 ∝ N

(
xt−1;

1
√
αt

xt,
1− αt

αt
I

)
,

which establishes the equivalence between Luo (2022) and our proof.

1.4 Denoising Loss

We aim to learn pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) that minimizes the KL divergence:

DKL (q (xt−1 | xt,x0) ∥pθ (xt−1 | xt)) .

In general, set Σθ (xt, t) = σ2
t for some variance σ2

t , then from the KL divergence of two Gaussians (see Appendix A.2), we have

Lt−1 = Ex0,xt

[
1

2σ2
t

∥µ̃t (xt,x0)− µθ (xt, t)∥2
]
+ C, C independent of θ.

From (1.2), we have the exact form of the variance, σ2
t = β̃t, and C = 0.

As in the reverse process, we have xt, it seems that we should learn to predict x0. We will show that predicting x0 is equivalent to
predicting noise. Note that

µ̃t (xt,x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt.

Since in the reverse process, we do not have x0, we want to express x0 with xt.

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, for some ϵ ∼ N (0, I),

then

x0 =
xt√
ᾱt
−
√
1− ᾱtϵ√

ᾱt
=

1√
ᾱt

(
xt −

√
1− ᾱt · ϵ

)
.

3

Note: Diffusion Models

Now,

µ̃t (xt,x0) =

√
αt (1− ᾱt−1)xt +

√
ᾱt−1 (1− αt)x0

1− ᾱt

=

√
αt (1− ᾱt−1)xt +

√
ᾱt−1 (1− αt)

xt−
√
1−ᾱtϵ√
ᾱt

1− ᾱt

=

√
αt (1− ᾱt−1)xt + (1− αt)

xt−
√
1−ᾱtϵ√
αt

1− ᾱt

=

√
αt (1− ᾱt−1)xt

1− ᾱt
+

(1− αt)xt

(1− ᾱt)
√
αt
− (1− αt)

√
1− ᾱtϵ

(1− ᾱt)
√
αt

=

(√
αt (1− ᾱt−1)

1− ᾱt
+

1− αt

(1− ᾱt)
√
αt

)
xt −

(1− αt)
√
1− ᾱt

(1− ᾱt)
√
αt

ϵ

=

(
αt (1− ᾱt−1)

(1− ᾱt)
√
αt

+
1− αt

(1− ᾱt)
√
αt

)
xt −

1− αt√
1− ᾱt

√
αt

ϵ

=
αt − ᾱt + 1− αt

(1− ᾱt)
√
αt

xt −
1− αt√
1− ᾱt

√
αt

ϵ

=
1− ᾱt

(1− ᾱt)
√
αt

xt −
1− αt√
1− ᾱt

√
αt

ϵ

=
1
√
αt

xt −
1− αt√
1− ᾱt

√
αt

ϵ

=
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵ

)
.

Since xt is known, we let

µθ (xt, t) =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ (xt, t)

)
,

and the denoising matching terms becomes

Lt−1 = Ex0,ϵ

[
β2
t

2σ2
tαt (1− ᾱt)

∥ϵ− ϵθ (xt, t)∥2
]
, where xt =

√
ᾱtx0 +

√
1− ᾱtϵ. (1.3)

Note that the reconstruction term, which is the log-probability under a Gaussian distribution, can also be expressed as a MSE (see
Appendix A.2).

1.5 Signal-to-Noise Ratio and Loss Weighting

Following Kingma et al. (2023), we define the signal-to-noise ratio (SNR) as

SNR(t) =
ᾱt

β̄t
.

Since xt =
√
ᾱtx0 +

√
β̄tϵ, as the name implies, SNR represents the ratio between the original signal and the noise. SNR decreases over

time, confirming the notion that the input becomes increasingly noisy over time. Note that SNR determines both ᾱt and β̄t as ᾱ2
t = β̄2

t .

Eq. (1.3) simplifies to

Lt−1 = Ex0,ϵ

[
1

2
·
(
SNR(t− 1)

SNR(t)
− 1

)
∥ϵ− ϵθ (xt, t)∥2

]
.

In practice, uniform sampling over time is taken instead of summing all the denoising matching terms. So more generally, the loss can be
expressed as a weighted MSE

L = Et,x0,ϵ

[
w(t) ∥ϵ− ϵθ (xt, t)∥2

]
.

this weighting term is often applied to ensure that certain timesteps (and thus noise levels) aren’t over- or under-emphasized during
training. In DDPM, w(t) = 1, ∀t.

4

Note: Diffusion Models

1.6 Training and Sampling

The training and sampling algorithms provided in DDPM (Ho et al., 2020) is provided below. In summary, the sampling process aims to
approximate the mean at time t− 1 by xt (given) and x0 (approximated, i.e., denoised by the neural network).

Algorithm 1 Training
1: repeat
2: x0 ∼ q(x0)
3: t ∼ Uniform({1, . . . , T})
4: ϵ ∼ N (0, I)
5: Take gradient descent step on

∇θ

∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)

∥∥2

6: until converged

Algorithm 2 Sampling

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: xt−1 = 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
+ σtz

5: end for
6: return x0

Common confusion about DDPM:

1. Why do we need so many steps in the reverse process? It seems that in every step we have already predicted x0 and use it to
sample xt−1.

• You do not need x̂0 to be perfect in each step, just good enough to take a small step in the right direction. In early denoising
steps, x̂0 is very noisy and the update is small. In later steps, xt becomes less noisy, so x̂0 becomes more accurate. Think of
x̂0 as a noisy estimate of a target, and you are doing one update step toward it each time, just like the gradient descent.

1.7 Relevance to Score Matching

In probability, the score function is∇x log q(x); it indicates the direction in which the probability density q(x) increases the most. Instead
of learning the full probability q(x), score matching learns the score function to move in the direction of higher data likelihood, at every
noise level.

DDPM relates to score matching simply by Tweedie’s formula, which states that for a Gaussian random variable z ∼ N (z;µz,Σz),

E [µz | z] = z+Σz∇z log q(z).

Consider,
q (xt | x0) = N

(
xt;
√
ᾱtx0, (1− ᾱt) I

)
,

by Tweedie’s formula:
E [µxt | xt] = xt + (1− ᾱt)∇xt log qt (xt | x0) =

√
ᾱtx0.

Rearrange terms:
xt =

√
ᾱtx0 − (1− ᾱt)∇xt log qt (xt | x0) .

We also know that
xt =

√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I).

It is easy to see the connection between the score function and the noise: ∇ log qt (xt | x0) = − 1√
1−ᾱt

ϵ. Thus, denoising is equivalent
to score matching, up to a constant factor dependent on time. Score-based models might offer some insight into diffusion models; the
readers are encouraged to read Sec. 3.

Since the Gaussian under consideration is isotropic, the derivation is straightforward. To help understanding of Tweedie’s formula, we
present an alternative derivation that does not rely on it directly.

q (xt | x0) = N
(
xt;
√
ᾱt x0, (1− ᾱt) I

)
=

1

(2π)d/2(1− ᾱt)d/2
exp

(
− 1

2(1− ᾱt)

∥∥xt −
√
ᾱt x0

∥∥2) ,

then

∇xt
log q (xt | x0) = ∇xt

(
−d

2
log(2π)− d

2
log(1− ᾱt)−

1

2(1− ᾱt)

∥∥xt −
√
ᾱt x0

∥∥2)
= − 1

2(1− ᾱt)
∇xt

∥∥xt −
√
ᾱt x0

∥∥2
5

Note: Diffusion Models

= − 1

2(1− ᾱt)
· 2
(
xt −

√
ᾱt x0

)
= − 1

1− ᾱt

(
xt −

√
ᾱt x0

)
= − 1

1− ᾱt

(√
1− ᾱtϵ

)
= − 1√

1− ᾱt
ϵ.

2 Denoising Diffusion Implicit Models (DDIM)

2.1 Accelerated Sampling

During training, we never use the Markov transition probability p (xt | xt−1); instead, we rely solely on the marginal1 distribu-
tions p (xt | x0). As a result, the training of DDPM inherently includes the training signals for any subsequence of time steps:
∆t, 2∆t, 3∆t, . . . , T , for any ∆t ≥ 1 that divides T .

From Eq. (1.2), we can interpret the sampling process as an interpolation between the estimated clean data x̂0 and the noisy input xt.
This perspective allows us skip intermediate steps during sampling if the trajectory is smooth. Thus, we want to reduce randomness in the
sampling process as randomness injects high-frequency variation.

2.2 DDIM Sampling

We begin by presenting the DDIM (Song et al., 2020) deterministic sampling algorithm to provide a high-level overview of its mechanism.
We then discuss the mathematical insights and justifications.

Algorithm 3 DDIM Sampling

1: ∆t = T
Nsteps

2: xT ∼ N (0, I)
3: for t = T, T −∆t, T − 2∆t, . . . ,∆t do
4: x̂0 = xt−

√
1−ᾱt·ϵθ(xt,t)√

ᾱt

5: xt−∆t =
√
ᾱt−∆t · x̂0 +

√
1− ᾱt−∆t · ϵθ(xt, t)

6: end for
7: return x0

Recall xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I). DDIM sampling works in two steps as a linear interpolation between x̂0 and xt:

1. Predict x̂0 from the noisy input xt

2. Move toward xt−∆t deterministically using a formula that guides the sample along a trajectory derived from x0 and xt.

Unlike DDPM, DDIM sampling does not add new noise in each step, making the process deterministic and more smooth.

2.3 Non-Markovian Forward Processes

The posterior transition distribution, i.e., Eq. (1.2), derived in DDPM follows a Gaussian distribution with variance β̃tI. However, the
above sampling is deterministic (no variance); we now dive into more mathematical insights and justifications as to why we can do this.

Recall that in DDPM, the posterior transition distribution is derived with the one-step forward transition: q (xt | xt−1), which defines the
joint distribution q (x1:T | x0) given the intial state q (x0). Although DDPM is defined as a Markovian process, we never use the joint
distribution during training. The DDPM objective depends only on the marginals q (xt | x0). There are many joint distributions that lead
to the same marginals. Using only marginals, we can derive an alternative posterior transition distribution, q (xt−1 | xt,x0).

1Here, p (xt | x0) is referred to as the marginal distribution because we do not track the intermediate steps. We marginalize the intermediate steps out.
The marginal here means marginal over path. Depending on the context, p(xt) could also be called marginal, which is marginalizing over initial states.

6

Note: Diffusion Models

Without the Markovian assumption, this distribution can be more flexible; it only needs to satisfy:∫
q (xt−1 | xt,x0) q (xt | x0) dxt = q (xt−1 | x0) . (2.1)

Generally, let
q (xt−1 | xt,x0) = N

(
xt−1; ζtxt + ξtx0, σ

2
t I
)
.

Then, we have

Distribution Sampling
q(xt−1 | x0) N (xt−1;

√
ᾱt−1x0, (1− ᾱt−1) I) xt−1 =

√
ᾱt−1x0 +

√
1− ᾱt−1ϵ1

q(xt | x0) N ((xt;
√
ᾱtx0, (1− ᾱt) I) xt =

√
ᾱtx0 +

√
1− ᾱtϵ2

q(xt−1 | xt,x0) N (xt−1; ζtxt + ξtx0, σ
2
t I) xt−1 = ζtxt + ξtx0 + σtϵ3∫

q(xt−1 | xt,x0) q(xt | x0) dxt q(xt−1 | x0)

xt−1 = ζtxt + ξtx0 + σtϵ3

= ζt(
√
ᾱtx0 +

√
1− ᾱtϵ2) + ξtx0 + σtϵ3

= (ζt
√
ᾱt + ξt)x0 + (ζt

√
1− ᾱtϵ2 + σtϵ3)

From Eq. 2.1, we have √
ᾱt−1 = ζt

√
ᾱt + ξt, 1− ᾱt−1 = ζ2t (1− ᾱt) + σ2

t .

There are three variables, but only two equations; letting σt be a free variable, we have

ζt =

√
1− ᾱt−1 − σ2

t

1− ᾱt
, ξt =

√
ᾱt−1 −

√
ᾱt (1− ᾱt−1 − σ2

t)

1− ᾱt
.

Rearranging terms, we have the following:

q (xt−1 | xt,x0) = N
(
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t ·
xt −

√
ᾱtx0√

1− ᾱt
, σ2

t I

)
.

Note that this is exactly Eq. (7) in Song et al. (2020) with a change in notation in αt; we adopt the DDPM notation (ᾱt) for consistency.
Now, one can generate a sample xt−1 from a sample xt via:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ (xt, t)√

ᾱt

)
︸ ︷︷ ︸

predicted x0

+
√

1− ᾱt−1 − σ2
t · ϵθ (xt, t)︸ ︷︷ ︸

direction pointing to xt

+ σtϵt︸︷︷︸
random noise

. (2.2)

During training, we only used the marginals, which are unchanged, so we can use the same model ϵθ for any value of σt. In principle, we
do not have constraints on σt, but different choices of σt will lead to different characteristics in the sampling process.

• When σt =
√

1−ᾱt−1

1−ᾱt
·
√
1− ᾱt

ᾱt−1
for all t, the forward process is Markovian, and the generative process becomes a DDPM.

• When σt = 0 for all t except t = 1, the sampling process becomes deterministic. More precisely, this deterministic sampling
corresponds to an implicit probabilistic model, which is what the I in DDIM stands for.

• Smaller noise leads to better sampling quality, particularly when the number of sampling steps is small.

2.4 Relevance to ODEs

Consider the DDIM update (2.2) without noise:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ (xt, t)√

ᾱt

)
x0 +

√
1− ᾱt−1 · ϵθ (xt, t) .

It can be rewritten as
xt√
ᾱt
− xt−1√

ᾱt−1
=

(√
1− ᾱt√
ᾱt

−
√
1− ᾱt−1√
ᾱt−1

)
ϵθ (xt, t) .

Assume large enough T , we can introduce a continuous variable s and define

• x(s) as the continuous analogue of xt,

7

Note: Diffusion Models

• ᾱ(s) as a smooth function replacing ᾱt,

• and ϵθ(x(s), s) as the continuous version of the predicted noise.

The discrete update, in the limit ∆s→ 0, becomes

d

ds

(
x(s)√
ᾱ(s)

)
=

d

ds

(√
1− ᾱ(s)√
ᾱ(s)

)
ϵθ (x(s), s) .

Cleaning up, we have
d

ds
x(s) =

1

2ᾱ(s)
· d
ds

ᾱ(s) · x(s) +
√
ᾱ(s) · d

ds

(√
1− ᾱ(s)√
ᾱ(s)

)
· ϵθ (x(s), s) .

3 Score-based Models

3.1 General Description

Any arbitrary probability distribution can be written in the form of an energy function: q(x) = 1
Z e−f(x), where f(x) is the energy

function. Taking the derivative of the log of both sides:

∇x log q(x) = ∇x log

(
1

Z
e−f(x)

)
= ∇x log

1

Z
+∇x log e

−f(x)

= −∇xf(x).

The score function∇x log q(x) points to the direction that minimizes the energy function. Score-based models aim to learn a score model
sθ ≈ ∇x log q(x) by minimizing the Fisher divergence:

L(θ) = Eq(x)

[
∥sθ(x)−∇ log q(x)∥22

]
.

The relevance of score models in diffusion models is introduced in Sec. 1.7, and we will further explore score functions and their
connection to stochastic differential equations (SDEs) and diffusion processes in Sec. 4.

3.2 Learning Score-based Models

The optimization objective contains∇ log q(x), which is infeasible because it requires access to the unknown data score. So, the idea is to
train a model sθ(x) to approximate ∇x log p(x) without needing to know p(x) or ∇ log q(x)directly. The family of methods that achieve
this is called score matching. As a particular example, Hyvärinen (2005) defines a loss function that only involves sθ and sampling from
q(x):

L(θ) = Eq(x)

[
∥sθ(x)−∇ log q(x)∥22

]
=

∫
q(x) ∥∇x log q(x)− sθ(x)∥2 dx

=

∫
q(x)

(
∥∇x log q(x)∥2 − 2sθ(x)

⊤∇x log q(x) + ∥sθ(x)∥2
)
dx.

Note that the first term
∫
q(x) ∥∇x log q(x)∥2 dx does not depend on θ and can be ignored during optimization. Note that

∫
q(x)sθ(x)

⊤∇x log q(x) dx =

∫
q(x)sθ(x)

⊤∇xq(x)

q(x)
dx

=

∫
sθ(x)

⊤∇xq(x) dx

8

Note: Diffusion Models

= −
∫

q(x)∇x · sθ(x)dx

= −Eq(x) [Tr(∇xsθ(x))] .

The loss can be simplified as

L(θ) = Eq(x)

[
1

2
∥sθ(x)∥2 +Tr(∇xsθ(x))

]
.

At a high level,

• 1
2 ∥sθ(x)∥

2 penalizes overly large gradients, encouraging smooth, stable estimates.

• Tr (∇xsθ(x)) is the Laplacian of the log-likelihood, it measures how much the vector field is expanding or contracting at a point.
If it is negative, it is pulling in (like a sink).

• If you are not familiar with vector calculus, you can think of the second term (the divergence, or trace of the Jacobian) as a
second derivative. When it is smaller (more negative), it suggests that the function is curving downward (concave), which
typically corresponds to a local maximum.

There are many other parameterizations of score matching; the readers can refer to Denoising Score Matching (Vincent, 2011) and Noise
Conditional Score Network (NCSN) (Song and Ermon, 2019) to begin with.

3.3 Sampling: Langevin Dynamics

Langevin dynamics is an iterative process; it starts with an arbitrary prior distribution x0 ∼ π(x), and then iterates the following:

xt+1 ← xt + c∇x log q(x) +
√
2cϵt, t = 0, 1, · · · ,K

where ϵt ∼ N (0, I). When c→ 0 and K →∞, xK converges to a sample from q(x) under certain regularity conditions2. Once we have
trained a score-based model sθ(x) ≈ ∇x log q(x), we can sample from q(x) by replacing ∇x log q(x) with sθ(x).

Common confusion about Langevin dynamics:

1. Why add noise?

• Langevin dynamics is derived from a stochastic differential equation that has q(x) as its stationary distribution. Without
noise, the process becomes a deterministic gradient ascent on log q(x), which just leads to mode seeking, not proper
sampling.

• If we only follow the gradient (i.e., no noise), we could easily get trapped at local maxima of log q(x). The Gaussian noise
helps the process escape local modes, such as in simulated annealing.

• The random walk component (noise) ensures that the process is ergodic (ignore this if you do not know stochastic processes).

4 SDE and Probability Flow ODE

Diffusion models can be described continuously as stochastic differential equations (SDEs). The connection is established in Song et al.
(2021). With the SDE pespective,

The connection between diffusion models and stochastic differential equations (SDEs) is established in Song et al. (2021). Using the
Fokker-Planck equation, it also presents equivalent forms of the reverse SDE

(or probablity flow ODE when the variance is set to 0) that samples from the same distribution.

Consequently, both DDPM and DDIM can be seen as discrete forms of the SDEs or ODEs.

4.1 SDE and Its Reverse

The general form of a Stochastic Differential Equation (SDE) is:

dxt = f (xt, t) dt+ g (xt, t) dWt,

2Within the scope of this write-up, regularity conditions typically refer to the dominated convergence condition, although in some contexts, continuity
and compact support may also suffice. These are standard assumptions to make in most machine learning settings.

9

Note: Diffusion Models

where f (xt, t) is the drift term that describes the deterministic trend of the process over time, g (xt, t) is the diffusion term that scales the
randomness introduced into the system, and dWt is an infinitesimal increment of a Wiener process (also known as Brownian motion or
random walk).

In general, when f is linear and g is not state-dependent, the SDE is a Gaussian process: xt is Gaussian for all t ≥ 0 given x0 as assumed
in diffusion models (Gaussian marginals). Thus, we consider only this specific case in the scope of this write-up. The derivation in this
subsection is based on an asymptotic analysis by assuming infinitesimal time increments. Consider appropriate drift and diffusion terms,
this SDE corresponds to DDPM/diffusion models. The derivation of the marginal distribution of an SDE that corresponds to that of
DDPM is provided in Sec. 4.3.

The SDE can be discretized as
xt+∆t − xt = f (xt, t)∆t+ g(t)

√
∆tϵ, ϵ ∼ N (0, I).

Rearrange,
xt+∆t = xt + f(xt, t)∆t︸ ︷︷ ︸

deterministic

+ g(t)
√
∆t ϵ︸ ︷︷ ︸

stochastic

, ϵ ∼ N (0, I)

In probability,

p (xt+∆t | xt) = N
(
xt+∆t;xt + f (xt, t)∆t, g(t)2∆t · I

)
∝ exp

(
−∥xt+∆t − xt − f (xt, t)∆t∥2

2g(t)2∆t

)
By Bayes, the reverse

p (xt | xt+∆t) =
p (xt+∆t | xt) p (xt)

p (xt+∆t)

= p (xt+∆t | xt) exp (log p (xt)− log p (xt+∆t))

∝ exp

(
−∥xt+∆t − xt − f (xt, t)∆t∥2

2g(t)2∆t
+ log p (xt)− log p (xt+∆t)

)
.

Assuming ∆t→ 0, a first-order Taylor expansion on log p (xt+∆t) gives

log p (xt+∆t) ≈ log p (xt) + (xt+∆t − xt) · ∇xt log p (xt) + ∆t
∂

∂t
log p (xt) .

Thus,

p (xt | xt+∆t) ∝ exp

−∥∥xt+∆t − xt −
[
f (xt, t)− g(t)2∇xt log p (xt)

]
∆t
∥∥2

2g(t)2∆t
+ O(∆t)︸ ︷︷ ︸

dropped as ∆t → 0


= exp

(
−
∥∥xt − xt+∆t +

[
f (xt, t)− g(t)2∇xt log p (xt)

]
∆t
∥∥2

2g(t)2∆t

)

≈ exp

(
−
∥∥xt − xt+∆t +

[
f (xt+∆t, t+∆t)− g(t+∆t)2∇xt+∆t

log p (xt+∆t)
]
∆t
∥∥2

2g(t+∆t)2∆t

)
,

where the last equation follows as a first-order approximation by assuming ∆t → 0. This is a Gaussian with mean xt+∆t −[
f (xt, t)− g(t)2∇xt

log p (xt)
]
∆t and variance g(t + ∆t)2∆t · I. Taking ∆t → 0, this probability corresponds to the reverse

SDE:
dxt =

[
f(xt, t)− g(t)2∇xt

log pt(xt)
]
dt+ g(t)dWt. (4.1)

4.2 Sampling and Training

Given the reverse SDE (4.1), we can sample through the reverse process:

xt = xt+∆t −
[
f (xt+∆t, t+∆t)− g(t+∆t)2∇xt+∆t log pt+∆t (xt+∆t)

]
∆t− g(t+∆t)

√
∆tϵ, ϵ ∼ N (0, 1).

As the marginal pt(xt | x0) is accessible (a sample derivation is shown in Sec. 4.3), we aim to express the score function∇xt log pt (xt)
in terms of these marginals:

∇xt
log pt (xt) = ∇xt

log (Ex0
[pt (xt | x0)])

10

Note: Diffusion Models

=
∇xt

(Ex0
[pt (xt | x0)])

Ex0 [pt (xt | x0)]

=
Ex0

[∇xt
pt (xt | x0)]

Ex0
[pt (xt | x0)]

=
Ex0 [pt (xt | x0)∇xt log pt (xt | x0)]

Ex0
[pt (xt | x0)]

,

where the third equality assumes regularity conditions allowing gradient and expectation to commute. Note that the score function can, in
principle, be computed analytically by evaluating the entire dataset, though this is computationally prohibitive, as we have to compute for
each generation trajectory.

Similar to Sec. 3, we learn a score model to approximate the score function. For any xt, the score function can be learned through

min
θ

Ex0

[
pt(xt | x0) ∥sθ(xt, t)−∇xt log pt(xt | x0)∥2

]
Ex0 [pt(xt | x0)]

 . (4.2)

Since Ex0
[pt(xt | x0)] is independent of θ, Eq. (4.2) reduces to

min
θ

Ex0

[
pt(xt | x0) ∥sθ(xt, t)−∇xt

log pt(xt | x0)∥2
]
. (4.3)

Last but not least, Eq. (4.3) is for a fixed xt, we should take the expectation over xt, and the final optimization objective becomes

min
θ

Ex0,xt∼pt(xt|x0)

[
∥sθ (xt, t)−∇xt

log pt (xt | x0)∥2
]
. (4.4)

As we have shown in Sec. 1.7, the score function is the noise. It is straightforward to see that Eq. (4.4) is equivalent to denoising, up to a
time-dependent weighting term.
Remark 4.1. Most readers are familiar with learning to approximate a function using MSE. It might seem different here. Our aim is to
learn the score function ∇xt

log pt (xt), but here the MSE is between the score model and the marginal score function. In fact, MSE
works the same even if the objective is expressed as a weighted average and the underlying reasoning is rather similar. We will show why
Eq. (4.3) learns sθ(xt, t) ≈ ∇xt

log pt (xt).

Proof. First, expand the loss function

L (sθ) = Ex0

[
pt (xt | x0) ∥sθ (xt, t)−∇xt

log pt (xt | x0)∥2
]

= Ex0

[
pt (xt | x0)

(
∥sθ∥2 − 2sθ · ∇xt

log pt (xt | x0) + ∥∇xt
log pt (xt | x0)∥2

)]
= ∥sθ∥2 · Ex0 [pt (xt | x0)]︸ ︷︷ ︸

=pt(xt)

−2sθ · Ex0 [pt (xt | x0)∇xt log pt (xt | x0)] + const

Now,
∂L

∂sθ
= 2pt (xt) sθ − 2Ex0

[pt (xt | x0)∇xt
log pt (xt | x0)] .

Setting ∂L
∂sθ

equal to 0, we have

s⋆θ (xt) =
Ex0

[pt (xt | x0)∇xt
log pt (xt | x0)]

Ex0
[pt (xt | x0)]

= ∇xt
log p (xt) .

4.3 Diffusion Models are SDEs: VP-SDE

Consider the SDE

dxt = −
β(t)

2
xt dt+

√
β(t) dWt,

define

γt = exp

(
−1

2

∫ t

0

β(s) ds

)
, Yt = γ−1

t xt.

11

Note: Diffusion Models

Note that
dYt = d(γ−1

t xt) = γ−1
t dxt + xt d(γ

−1
t).

Since γ−1
t = e

1
2

∫ t
0
β(s)ds, we have

d

dt
γ−1
t =

1

2
β(t)γ−1

t ⇒ d(γ−1
t) =

1

2
β(t)γ−1

t dt,

then

dYt = γ−1
t

(
−1

2
β(t)xtdt+

√
β(t)dWt

)
+ xt ·

1

2
β(t)γ−1

t dt

= γ−1
t

√
β(t)dWt.

Integrating from 0 to t:

Yt = Y0 +

∫ t

0

γ−1
s

√
β(s)dWs

= x0 +

∫ t

0

γ−1
s

√
β(s)dWs.

So,

xt = γtYt = γtx0 + γt

∫ t

0

γ−1
s

√
β(s)dWs.

Thus xt | x0 ∼ N (γtx0, σ
2
t I), where the mean is γt and the variance is

σ2
t = Var

(
γt

∫ t

0

γ−1
s

√
β(s)dWs

)
.

By Itô isometry (see Appendix A.3),

σ2
t = γ2

t

∫ t

0

(
γ−1
s

)2
β(s)ds.

Note that
γ−1
s = e

1
2

∫ s
0
β(r)dr ⇒ (γ−1

s)2 = e
∫ s
0
β(r)dr.

So

σ2
t = γ2

t

∫ t

0

e
∫ s
0
β(r)drβ(s)ds.

Simplify this by change of variables. Let

u(s) =

∫ s

0

β(r)dr ⇒ du

ds
= β(s),

then

σ2
t = γ2

t

∫ t

0

eu(s)β(s)ds = γ2
t

∫ t

0

eu(s)
du

ds
ds = γ2

t

∫ u(t)

u(0)

eudu = γ2
t (e

u(t) − eu(0)).

Since u(0) = 0, and u(t) =
∫ t

0
β(s)ds, we get

σ2
t = γ2

t (e
∫ t
0
β(s)ds − 1).

Moreover,
γ2
t = e−

∫ t
0
β(s)ds ⇒ σ2

t =
(
e−

∫ t
0
β(s)ds

)(
e
∫ t
0
β(s)ds − 1

)
= 1− e−

∫ t
0
β(s)ds.

In conclusion,
xt | x0 ∼ N

(
γtx0, σ

2
t I
)
,

where
γt = e−

1
2

∫ t
0
β(s) ds︸ ︷︷ ︸

mean decay factor

and σ2
t = 1− e−

∫ t
0
β(s) ds︸ ︷︷ ︸

variance growth

.

12

Note: Diffusion Models

Note that σ2
t = 1− γ2

t . With appropriate β(s) such that γt = ᾱt, the marginals at any given time, xt | x0, follow exactly as in a diffusion
process. Specifically, let β(s) = − 2√

ᾱs

d
√
ᾱs

ds , then

γt = e−
1
2

∫ t
0
β(s) ds = e

∫ t
0

1√
ᾱs

d
√

ᾱs
ds ds

.

Note that
1√
ᾱs

d
√
ᾱs

ds
=

d

ds

[
ln
(√

ᾱs

)]
,

thus
γt = e

∫ t
0

d
ds [ln(

√
ᾱs)] ds =

√
ᾱs.

Suppose that x0 ∼ N (0, 1), the process is constructed to keep the total variance normalized as time progresses: Var (xt) = ᾱt +
(1− ᾱt) = 1. Therefore, this SDE is called the Variance Preserving SDE (VP-SDE).

Another common type of SDE for diffusion models is the Variance Exploding SDE (VE-SDE), given by

dxt =

√
d (σ2

t)

dt
dWt

xt | x0 ∼ N
(
x0, σ

2
t I
)
,

where σt increases over time and is not bounded by 1. Usually, at the end, σT >> x0 dominates the mean x0, so we can just sample
standard Gaussian noise scaled by σT .

4.4 Probability Flow ODE

Similar to Section 2, we argue that the training process depends solely on the score function ∇xt log pt(xt). Therefore, as long as the
distribution pt(xt) remains the same, the resulting trained score model remains the same. In particular, the same marginal distribution
pt(xt) can arise from different underlying SDEs, offering greater flexibility. SDE describes how individual sample paths of a stochastic
process evolve over time. To study the distribution, the Fokker-Planck equation (Risken and Frank, 1996) describes how the probability
distribution (density) evolves over time.

Given an diffusion SDE with state-independent diffusion coefficient:

dxt = f (xt, t) dt+ g (t) dWt, (4.5)

the corresponding reverse SDE is
dxt =

[
f(xt, t)− g(t)2∇xt log pt(xt)

]
dt+ g(t)dWt. (4.6)

The Fokker-Planck equation that “solves” Eq. (4.5) is given by3

∂

∂t
pt(xt) = −∇xt

· [f(xt, t)pt(xt)] +
1

2
g(t)2∇2

xt
pt(xt). (4.7)

We can adjust the drift term to compensate for changes in the diffusion coefficient. For any function σ(t) such that σ(t)2 ≤ g(t)2, Eq.
(4.7) can be rewritten as

∂

∂t
pt(xt) = −∇x ·

[
f(xt, t)pt(xt)−

1

2

(
g(t)2 − σ(t)2

)
∇xtpt(xt)

]
+

1

2
σ(t)2∇2

xt
pt(xt)

= −∇xt
·
[(

f(xt, t)−
1

2

(
g(t)2 − σ(t)2

)
∇xt

log pt(xt)

)
pt(xt)

]
+

1

2
σ(t)2∇2

xt
pt(xt).

(4.8)

Eq. (4.8) can be seen as the Fokker-Planck equation with drift
(
f(xt, t)− 1

2

(
g(t)2 − σ(t)2

)
∇xt log pt(xt)

)
and diffusion coefficient

σ(t). Following Eq. (4.5) and Eq. (4.6), the forward and reverse SDEs, respectively, are

dxt =

(
f(xt, t)−

1

2

(
g(t)2 − σ(t)2

)
∇xt

log pt(xt)

)
dt+ σ (t) dWt, (4.9)

and

dxt =

[(
f(xt, t)−

1

2

(
g(t)2 − σ(t)2

)
∇xt log pt(xt)

)
− σ(t)2∇xt log pt(xt)

]
dt+ σ(t)dWt

=

[
f(xt, t)−

1

2

(
g(t)2 + σ(t)2

)
∇xt

log pt(xt)

]
dt+ σ(t)dWt.

(4.10)

3The proof can be easily found online.

13

Note: Diffusion Models

When σ(t) = 0, Eq. (4.10) reduces to an ODE, termed the probability flow ODE. The sampling is deterministic. It can be shown that the
Euler-Maruyama discretization of the probability flow ODE is equivalent to the ODE derived in Sec. 2.4. In summary, Eq. (4.5)-(4.6) and
Eq. (4.9)-(4.10) define the same probability flow pt(xt). Since the score function ∇xt log pt(xt) is unknown, we can only train with Eq.
(4.5); however, we can sample with Eq. (4.10) with smaller or even no variance.
Remark 4.2. To intuitively understand this, we know that the score function, i.e., the gradient of the log probability, points to the
high-density regions.

• For the forward SDE (Eq. (4.5) and Eq. (4.9)), randomness (the Wiener process) causes the density to spread out (diffuse). If
you reduce the randomness from g(t) to σ(t), the density will spread less. To compensate for it, we include a correction term
− 1

2

(
g(t)2 − σ(t)2

)
∇xt

log pt(xt) in the drift pointing towards the low-density regions.

• For the reverse SDE (Eq. (4.6) and Eq. (4.10)), the probability flows from low-density regions to high-density regions. In the
reverse process, when we reduce the randomness, it might get over-condensed in high-density regions (recall that noise spreads
out the density). Therefore, we reduce the “step-size” of moving towards the score direction from g(t)2 to 1

2

(
g(t)2 + σ(t)2

)
.

4.5 Understanding the Fokker-Planck Equation

Consider the general form of a SDE
dxt = f (xt, t) dt+ g (xt, t) dWt.

The “solution” to this SDE will be a probability density function pt(xt) such that xt ∼ pt(xt). In general, the mean, E[p(x, t)], is
the deterministic solution to dx

dt = f (xt, t) while the variance, Var[p(x, t)], incorporates the function g (xt, t). Rather than tracking
individual sample paths, we want to understand how the distribution over possible states xt evolves over time. This is given by the
corresponding Fokker-Planck equation:

∂

∂t
pt(xt) = −∇xt

· [f(xt, t)pt(xt)] +
1

2
g(xt, t)

2∇2
xt
pt(xt).

Remark 4.3. To intuitively understand the Fokker-Planck equation, we explain each term below. A more detailed and mathematical
explanation can be found in Peter E. Holderrieth’s blog.

• ∂
∂tpt(xt): This term describes how the probability density evolves over time, reflecting the net inflow4 of the probability mass.

• −∇xt · [f(xt, t)pt(xt)]: This negative divergence term reflects the deterministic net inflow5 under the influence of f . Think of f
as a wind field, it pushes the probability density in certain directions.

• 1
2g(xt, t)

2∇2
xt
pt(xt): This term describes how fast the probability mass spreads out. ∇2p (the Laplacian of the density)

measures how curved the density is. High curvature→ sharp peak→ probability "wants" to flow outward to flatten it out. So,
diffusion drives flow from high to low concentration.

Table 1: Comparison of drift and diffusion in SDEs and Fokker-Planck equations

Feature Drift f (xt, t) Diffusion g (xt, t)
Role in SDE Deterministic evolution Randomness

Role in Fokker-Planck Convection Spreading
(shift of density) (dispersion of density)

Mathematical First derivative (gradient) Second derivative (Laplacian)
Indicates direction of flow Indicates spread/curvature

Analogy Wind pushing a particle Heat causing it to diffuse

4A positive value of ∂
∂t
pt(xt) indicates an inflow of probability mass, i.e., an increase in density at the point xt over time. A negative value of

∂
∂t
pt(xt) indicates an outflow. By conservation of probability, a positive divergence term indicates a net outflow.

5This term is negative as divergence indicates a net outflow, so negating the divergence term indicates a net inflow.

14

https://www.peterholderrieth.com/blog/2023/The-Fokker-Planck-Equation-and-Diffusion-Models/

Note: Diffusion Models

References
Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models. arXiv preprint arxiv:2006.11239.
Hyvärinen, A. (2005). Estimation of non-normalized statistical models by score matching. Journal of Machine Learning Research,

6(24):695–709.
Kingma, D. P., Salimans, T., Poole, B., and Ho, J. (2023). Variational diffusion models.
Luo, C. (2022). Understanding diffusion models: A unified perspective.
Risken, H. and Frank, T. (1996). The Fokker-Planck Equation: Methods of Solution and Applications. Springer Series in Synergetics.

Springer Berlin Heidelberg.
Song, J., Meng, C., and Ermon, S. (2020). Denoising diffusion implicit models. arXiv:2010.02502.
Song, Y. and Ermon, S. (2019). Generative modeling by estimating gradients of the data distribution. In Advances in Neural Information

Processing Systems, pages 11895–11907.
Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2021). Score-based generative modeling through

stochastic differential equations. In International Conference on Learning Representations.
Vincent, P. (2011). A connection between score matching and denoising autoencoders. Neural Computation, 23(7):1661–1674.

A Mathematical Preliminary

A.1 Entropy, Cross-entropy, and KL Divergence

1. Entropy H(p) is a measure of the uncertainty in the distribution.

H(p) = EX∼p[− log p(X)]

• Non-negativity: H(p) ≥ 0, with equality if and only if p is a degenerate distribution (all probability mass is on one
outcome).

2. Cross-entropy H(p, q) measures the expected number of bits needed to encode the data from p using the distribution q.

H(p, q) = EX∼p[− log q(X)]

• Non-negativity: Cross-entropy is always non-negative.
• Asymmetric: Cross-entropy is not symmetric, i.e., H(p, q) ̸= H(q, p).
• Lower Bound: Cross-entropy H(p, q) is greater than or equal to the entropy H(p), i.e., H(p, q) ≥ H(p).
• Equality: H(p, q) = H(p) if and only if p = q, i.e., when the distributions are the same.

3. KL Divergence DKL(p∥q) is a measure of how one probability distribution diverges from another.

DKL(p∥q) = EX∼p

[
log

p(X)

q(X)

]
• Non-negativity: DKL(p∥q) ≥ 0, with equality if and only if p = q. This is a consequence of Jensen’s inequality.
• Asymmetry: KL divergence is not symmetric, meaning DKL(p∥q) ̸= DKL(q∥p).
• Relation to Cross-Entropy: The KL divergence can be expressed as the difference between the cross-entropy and the

entropy:
DKL(p∥q) = H(p, q)−H(p).

A.2 Log-likelihoods and KL Divergence of Gaussians

Log Likelihood for Multivariate Gaussian

• For a multivariate Gaussian distribution x ∼ N (µ,Σ) with mean vector µ ∈ RD and covariance matrix Σ ∈ RD×D (i.e.,
θ = [µ,Σ]), the probability density function is:

p(x;µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
.

• Assuming Σ is diagonal:

p(x;µ,Σ) =
1

(2π)D/2
∏D

i=1 σi

exp

(
−1

2

D∑
i=1

(xi − µi)
2

σ2
i

)
.

15

Note: Diffusion Models

• The log-likelihood is:

log p(x;µ,Σ) = log

(
1

(2π)D/2
∏D

i=1 σi

)
− 1

2

D∑
i=1

(xi − µi)
2

σ2
i

= −D

2
log(2π)−

D∑
i=1

log σi −
1

2

D∑
i=1

(xi − µi)
2

σ2
i

.

• The log-likelihood consists of 3 terms:
– A constant term: −D

2 log(2π).

– A variance-dependent term: −
∑D

i=1 log σi.

– A MSE-like term penalizing deviations from the mean: − 1
2

∑D
i=1

(xi−µi)
2

σ2
i

.

KL Divergence for Two Multivariate Gaussians

• If p ∼ N (µp,Σp) and q ∼ N (µq,Σq), then

KL(p∥q) = 1

2

(
log
|Σq|
|Σp|

−D + tr(Σ−1
q Σp) + (µq − µp)

⊤Σ−1
q (µq − µp)

)
.

• Assuming diagonal covariance matrices:

DKL(p∥q) =
1

2

D∑
i=1

(
log

σ2
q,i

σ2
p,i

− 1 +
σ2
p,i

σ2
q,i

+
(µp,i − µq,i)

2

σ2
q,i

)
.

• The KL divergence consists of 3 terms:

– 1
2

∑D
i=1 log

σ2
q,i

σ2
p,i

: accounts for the difference in variances.

– 1
2

∑D
i=1

σ2
p,i

σ2
q,i

: measures the scaling difference in variances.

– 1
2

∑D
i=1

(µp,i−µq,i)
2

σ2
q,i

: penalizes differences in the means (MSE normalized by q’s variance).

Special Case: Fixed Variance

• If the variances in the Gaussian distributions are fixed (i.e., constants and not learnable), then maximizing the log-likelihood or
minimizing the KL divergence reduces to minimizing the mean squared error (MSE) between the means of the distributions.

A.3 Itô Isometry

Suppose f(t) is square-integrable, i.e.:

E

[∫ T

0

f(t)2dt

]
<∞.

Itô’s isometry says

E

(∫ T

0

f(t)dWt

)2
 = E

[∫ T

0

f(t)2dt

]
.

In terms of variance,

Var

(∫ T

0

f(t)dWt

)
= E

(∫ T

0

f(t)dWt

)2
 ,

because the Itô integral has mean zero

E

[∫ T

0

f(t)dWt

]
= 0.

16

	Denoising Diffusion Probabilistic Models (DDPM)
	Forward Process
	Reverse Process
	Optimization Objective: ELBO
	Denoising Loss
	Signal-to-Noise Ratio and Loss Weighting
	Training and Sampling
	Relevance to Score Matching

	Denoising Diffusion Implicit Models (DDIM)
	Accelerated Sampling
	DDIM Sampling
	Non-Markovian Forward Processes
	Relevance to ODEs

	Score-based Models
	General Description
	Learning Score-based Models
	Sampling: Langevin Dynamics

	SDE and Probability Flow ODE
	SDE and Its Reverse
	Sampling and Training
	Diffusion Models are SDEs: VP-SDE
	Probability Flow ODE
	Understanding the Fokker-Planck Equation

	Mathematical Preliminary
	Entropy, Cross-entropy, and KL Divergence
	Log-likelihoods and KL Divergence of Gaussians
	Itô Isometry

