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Group equivariance in ML models is about enforcing symmetries in our architectures.

• Many learning tasks, oftentimes, have symmetries under some set of transformations acting 
on the data. 

• More importantly, the nature itself is about symmetries.
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FYI: Dr. Chen Ning Yang received the Nobel Prize in physics (1957) for discoveries about symmetries, and his B.S. 
thesis is “Group Theory and Molecular Spectra”.



Introduction: Learning Symmetries

To learn symmetry, a common approach is to do data-augmentation: Feed augmented data and hope 
the model “learns” the symmetry.
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Issues:
û No guarantee of having symmetries in the model
û Wasting valuable net capacity on learning symmetries from data
û Redundancy in learned feature representation
Solution:
ü Building symmetries into the model by design! 



Introduction: Group Equivariant Models

In this talk, I will introduce group equivariance and group equivariant architectures. This talk will cover the 
following topics with a focus on intuition over mathematical rigors:

v Group Theory Mathematical Preliminary

v CNNs and Translation Equivariance

v From CNNs to Regular Group CNNs for SE(2) Equivariance

v Benefits of Group CNNs

What is group equivariance? In a nutshell, group equivariance means that if the input is transformed, the output will 
be changed in a predictable way.

Building symmetry into ML has led to major breakthroughs in deep learning:

○ Imposing translational symmetry and parameter sharing allowed CNNs to essentially solve 
computer vision.

○ Group Equivariance conceptualizes CNN success (symmetry exploitation) and generalizes it to 
tasks with other symmetries.



Mathematical Preliminary: Group

In plain English:
§ Closure: when you apply two transformations of interest, it is still a transformation of interest.
§ Associativity: the order of “grouping” transformations does not matter.
§ Identity: we should be able to not apply any transformation at all.
§ Inverse: we should be able to transform back. 



Mathematical Preliminary: Representation

Image Source: https://uvagedl.github.io/



Mathematical Preliminary: Representation



Mathematical Preliminary: Equivariance and Invariance



CNNs and Translation Equivariance: Convolution, Cross-Correlation

As a convention, we actually perform cross-correlation in CNNs. If a CNN can learn a task using convolution operation, 
it can also learn the same task using correlation operation (It would learn the rotated, along the diagonal, version of each 
filter).



CNNs and Translation Equivariance: Translation Equivariance



CNNs and Translation Equivariance: Intuition

Image Source: StackOverflow



CNNs and Translation Equivariance: Generalization

Integral over the 
Translation Group Translated KernelsThe domain is the 

translation group

To generalize to other groups, we should consider the follwoings:
• Make the function defined on the group of interest.
• Integrate over the group of interest
• Make the kernel reflect the actions of the group of interest



Regular Group CNN and SE(2) Equivariance: SE(2) Lifting Correlation

• To make the function defined on the group of interest, we define the lifting operation.

The domain of the 
output is lifted to 
the SE(2) group The kernel reflects 

the SE(2) group 
now

Still R(2) for lifting 
operation because 
the function is 
define on R(2)

The domain of the 
input is R(2)



Regular Group CNN and SE(2) Equivariance: SE(2) Lifting Correlation

Convolve

:

Convolve

:

(Rotate the Input) ↺  = → + ↺ (Periodic Shift + Planar Rotation for the Output) 

↺

→



Regular Group CNN and SE(2) Equivariance: SE(2) Cross Correlation

Now, the function is already defined on the group of interest, we still need to:
• Integrate over the group of interest
• Make the kernel reflect the actions of the group of interest



Regular Group CNN and SE(2) Equivariance: SE(2) Cross Correlation

The domain of the 
output is still the 
SE(2) group

Planar Rotation

Integrate over 
SE(2) because the 
function is now 
define on SE(2)

The domain of the 
output is lifted to 
the SE(2) group Planar Rotation to raise 

to the feature maps to 
the group SE(2)

Still R(2) for lifting 
operation because 
the function is 
define on R(2)

Periodic Shift

Reflect the SE(2) 
Group

The domain of the 
input is R(2)

The domain of the 
input is SE(2)



Regular Group CNN and SE(2) Equivariance: SE(2) Cross Correlation

Input: Feature Maps Rotated Input (90 deg)

Kernels Kernels

The goal is still 
(Rotate the Input) ↺  = → + ↺ (Periodic Shift + Planar Rotation for the Output) 

Rot90

Rot90

Result in the same feature map, but 
rotated 90 degrees.

Thus, the resulting feature maps will still be rotated and periodically shifted. It seems that so far, we only 
used                         , but recall that, in group correlation, we also have            . Now, imagine when the 
input is rotated 180 deg, the above equivariance does not hold anymore. That’s why we actually need to 
have convolution on the theta axis as well. 



Regular Group CNN and SE(2) Equivariance: More Intuition

Although the examples are given for the group SE(2), the idea can generalize to 
other affine groups (semi-direct product groups).
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An overview of actual implementation with nn.Conv2d()

Note: Sizes of H and W 
may change 
depending on padding, 
strides, etc..



Regular Group CNN and SE(2) Equivariance: Example

Image Source: https://uvagedl.github.io/



Results: Group Equivariant Convolutional Networks

Group Equivariant Convolutional Networks; Taco S. Cohen, Max Welling ICML 2016 (https://arxiv.org/pdf/1602.07576.pdf)   

Results on datasets with rotations: The rotated 
MNIST dataset contains 62000 randomly rotated 
handwritten digits. Z2CNN: Normal CNN

P4CNNRotation Pooling: 
P4CNN but impose rotation 
invariance in every layer

P4CNN: only rotation 
invariance for the output layer, 
equivariance for the 
intermediate layers.

p4: Cyclic rotation group of order 4 (0, 90, 180, 270)
p4m: p4 plus 4 horizontal and vertical flips

Results on datasets without rotations: CIFAR10+: moderate 
data augmentation with horizontal flips and small translations 

The CIFAR dataset is not actually symmetric, since 
objects typically appear upright. Nevertheless, we see 
substantial increases in accuracy on this dataset, 
indicating that there need not be a full symmetry for G-
convolutions to be beneficial.
In the absence of global symmetries, Group Conv can 
still improve the performance due to its ability to 
capture local symmetries.

As expected, Group conv can improve model 
performance when (global)symmetries exists.



Regular Group CNN: Intuition for Benefits and Advantages

The benefits of having equivariant NN architecture can be summarized as follows:

q Equivariance: We have geometric guarantee that the model is equivariant to certain symmetry groups.

q Richer Feature Representations:

q Generalization and Efficient Learning: Geometric priors constrain the parameter search space to smaller 
region → less parameters, better generalization with less data. 

Normal CNN kernel learns 
roto-translated features, but 
they are inherent in Group 
CNN.



Conclusion

In this talk, we covered

§ The issues in data augmentation to attain symmetries and the motivations of having symmetries in the 
model itself.

§ Several basic mathematical concepts needed to understand group equivariance.

§ Definitions of convolution and cross-correlation and the intuition why they are equivariant under 
translations.

§ Generalization of the notions of translational equivariance in normal CNNs to building group equivariant 
CNNs.

§ The mathematical formulations of group CNNs and the intuitions behind the mathematics.

§ The results in the original group CNN paper.

§ The intuition of the benefits of having equivariant models, which can be beyond simply achieving 
symmetries.


