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Introduction

Group equivariance in ML models 1s about enforcing symmetries in our architectures.

* Many learning tasks, oftentimes, have symmetries under some set of transformations acting

on the data.
* More importantly, the nature itself is about symmetries.
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A Model Prediction
" 4 Have you ever noticed how nature seems to love
#o symmetry? & ..
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£ ] volution has literally trillions of shapes to pick from,
( ) — — Evolution has literally trillions of sh kf
/ ' and yet, biological structures often show symmetry
y | and simplicity.
This is the story of the discovery that completely
changed how | see biology. B
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FYI: Dr. Chen Ning Yang received the Nobel Prize in physics (1957) for discoveries about symmetries, and his B.S.
thesis is “Group Theory and Molecular Spectra™.




Introduction: Learning Symmetries

To learn symmetry, a common approach is to do data-augmentation: Feed augmented data and hope
the model “learns” the symmetry.
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Issues:

x No guarantee of having symmetries in the model

x Wasting valuable net capacity on learning symmetries from data
¥ Redundancy in learned feature representation

Solution:

v" Building symmetries into the model by design!




Introduction: Group Equivariant Models

What is group equivariance? In a nutshell, group equivariance means that if the input is transformed, the output will
be changed in a predictable way.

Building symmetry into ML has led to major breakthroughs in deep learning:

O Imposing translational symmetry and parameter sharing allowed CNNs to essentially solve
computer vision.

O  Group Equivariance conceptualizes CNN success (symmetry exploitation) and generalizes it to
tasks with other symmetries.

In this talk, I will introduce group equivariance and group equivariant architectures. This talk will cover the
following topics with a focus on intuition over mathematical rigors:

% Group Theory Mathematical Preliminary
¢ CNNs and Translation Equivariance
% From CNNs to Regular Group CNNs for SE(2) Equivariance

% Benefits of Group CNNs




Mathematical Preliminary: Group

Agroup (G, ) is a set of elements G equipped with a group product -, a binary operator, that satisfies the following four axioms:

« Closure: Given two elements g and h of G, the product g - his also in G.

« Associativity: For g, h,% € G the product - is associative,i.e., g- (h-1) = (g- h) - 1.

« Identity element: There exists an identity element e € G suchthate-g=g-e=gforanyg € G.

« Inverse element: For each g € G there exists an inverse eiementg_l c G st g_l -g=g- g_l =

Example:

The translation group consists of all possible translations in R? and is equipped with the group product and group inverse:
g.g':(t—kt’)j tTtIERQ

g =(-),
with g = (t),9’ = (¢'),and e = (0,0).

In plain English:

= (Closure: when you apply two transformations of interest, it is still a transformation of interest.
= Associativity: the order of “grouping” transformations does not matter.

= Identity: we should be able to not apply any transformation at all.

= Inverse: we should be able to transform back.




Mathematical Preliminary: Representation

A representation p : G — G L(V') is a group homomorphism from G to the general linear group GL(V'). That is, p(g) is a linear
transformation parameterized by group elements g € G that transforms some vector v € V (e.g. an image) such that
p(g')op(g)lvl=p(g" -9)v]

p(g'- g)Iv] p@IV] X —— v

p(g"Hlp(g)v]]

This essentially means that we can transfer group structure to other types of objects now, such as vectors or images.

Note: A homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or
two vector spaces). A general linear group is the group of all invertible dy, X dy matrices.

A left-regular representation .E’g is a representation that transforms functions f by transforming their domains via the inverse group action

Zolfl(2):=f(g7" =)

Image Source: https://uvagedl.github.io/




Mathematical Preliminary: Representation

Example I:
1. f € Ly (R): A function defined on a line.
2. G = R: The 1D translation group.
3. [Z—: fl(z) = f(t ' ®z) = f(x — t): Atranslation of the function.

Example II:
1. f € Ly (R?): A2D image.
2. G = SE(2): The 2D roto-translation group.
3. [0 f1(x) = f (R, " (z — t)): A roto-translation of the image.

Remark: Group Structure on Different Objects

1. Group Product (acting on G it self): g - ¢’
2. Left Regular Representation (acting on a vector spaces): £, f
3. Group Actions (acting on Rd): geOT




Mathematical Preliminary: Equivariance and Invariance

Equivariance is a property of an operator @ : X — Y (such as a neural network layer) by which it
X b o
®opi(g)=p (9)02,

commutes with the group action:

Invariance is a property of an operator ® : X — Y (such as a neural network layer) by which itjremains unchanged|after the group action:

dop’(g) =2,

. px(g): group representation action on X
« p¥ (g): group representation action on Y’
» Invariance is a special case of equivariance when pY (g) is the identity.

Invariance Equivariance
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CNNs and Translation Equivariance: Convolution, Cross-Correlation

Definition (Convolution):

The convolution of f and g is written as f * g, denoting the operator with the symbol *. It is defined as the integral of the product
of the two functions after one is reflected and shifted. As such, it is a particular kind of integral transform:

(ks fi{z) = [Rd k(x — ') f(a')da'.

An equivalent definition is (commutativity):

(B )(z) = /u{“ k(z')f(z — z')dz'.

Definition (Cross-Correlation):

The corss-correlation of f and g is written f x g, denoting the operator with the symbol x. It is defined as the integral of the
product of the two functions after one is shifted. As such, it is a particular kind of integral transform:

(kx f)(z) := fRd k(z' — z)f(z')dz'.

An equivalent definition is (not commutativity in this case):

(s D) = [ M)+ )i’

As a convention, we actually perform cross-correlation in CNNs. If a CNN can learn a task using convolution operation,

it can also learn the same task using correlation operation (It would learn the rotated, along the diagonal, version of each
filter).




CNNs and Translation Equivariance: Translation Equivariance

Convolution and Cross-Correlation are translation equivariant, so are their discrete counterparts.

Example:

1. Translate f by ¢ first, then apply the convolution:

(k* 2. f)(z) = fdk($’ —z)[t ' o f(z')]da’ :/

k(z' —x)f(z' —t)dx'.
R R

2. Apply convolution first, and then translate by ¢:

Zi(kx f)(z) =% /};ﬁ k(z' — (z — 1)) f(z')dz = fﬂd k(' —z+t)f(z')dz' = / k(z' — z)f(z' — t)dz.

Ed

In the last equality, we just replace =’ by ' — . Note that this operation is valid because this substitution is a bijection R? — R? and we
integrate over the entire Re.

By similar arguments, we can prove translation equivariance for convolution and the discrete versions.




CNNs and Translation Equivariance: Intuition

Mathematically, it is easy to prove translation equivariance. However, let's look at the definiton of cross-correlation again to gain some intution

about how to achieve equivariance.

Cross-Correlation:

(kx @)= [ K’ = 2)(@)do

R

Replace z’ by ' + a:

(Bxf)(z):= [R‘d k(z")f(z' + x)dz'.

Intuition:[f(z’ + z) represents a translated version of f(x)} We have created many translated version of f(z) while creating the feature map.
If we need to compute the cross-correlation for a transformed f, we can just go and look up the relevant outputs, because we have already

computed them. Equivalently, k(z’ — x) represents a translated version of k(z).
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Image Source: StackOverflow




CNNs and Translation Equivariance: Generalization

(kx f)(z) := [_d k(z' — ) f(z')dz' = A&d | k()] fz))de" = (LK, f)Lz(Ef) = {k,.’f’_xf>L2(Rd).

14

|

Integral over the

Translation Group
The domain is the Translated Kernels

translation group

Here, we explicityly think of the cross-correlation in terms of translations. To generalize, if we want to transform f with other groups, the trick is
to make the kernel k to be represented by a group. Group representations on k is reflected on f as well.

To generalize to other groups, we should consider the follwoings:
* Make the function defined on the group of interest.

* Integrate over the group of interest

* Make the kernel reflect the actions of the group of interest




Regular Group CNN and SE(2) Equivariance: SE(2) Lifting Correlation

* To make the function defined on the group of interest, we define the lifting operation.

The lifting correlation of f and g is written f * sp(2) 9. denoting the operator with the symbol x g 9) . It is defined as the integral of the product
of the two functions after one is shifted and rotated. As such, it is a particular kind of integral transform:

(sspn) @, 0) = [ K(Ry* (& =) f@)de’ = [ 12 k@) f@)de’ = (L ks £,

B

Lifting correlation raise the feature map to a higher dimension that represents rotation.|Now planar rotation becomes a rotation in xy-axes and
a periodic shift in f-axis.

(k * SE(2) f)(m} 6) = ‘/‘q k(R’E 1(23’ — m))f(ﬂ“;]dﬂ?, — Lz[fg (z.0) k(m')]f(:r:’)d:f:' = <.29g {I?g}k, f>Lz{RE}.

4 -

The domain of the
still R(2) for lifting input is R(2)
The domain of the operation because
output is lifted to the function is
the SE(2) group define on R(2) The kernel reflects

the SE(2) group
now




Regular Group CNN and SE(2) Equivariance: SE(2) Lifting Correlation

180°

Input Image

(_Convolve )
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(Rotate the Input) O =— + O (Periodic Shift + Planar Rotation for the Output)




Regular Group CNN and SE(2) Equivariance: SE(2) Cross Correlation

Now, the function is already defined on the group of interest, we still need to:
* Integrate over the group of interest
* Make the kernel reflect the actions of the group of interest

The group correlation of f and g is written f *sp(2) 9, denoting the operator with the symbol xgg(9). It is defined as the integral of the product
of the two functions after one is shifted and rotated. As such, it is a particular kind of integral transform:

(kxsmay )(z,8) : = f

k(R;' (' —2),6 —0 mod 2r) f(',6)d¢ da’
SE(2)

. f 2, k(@ 0)]f(z', 0)d6 da
SE(2)

= <'g9==f1-':6*) k, f>IL2{SE2)}'

Since SFE(2) is a semidirect group, SE(2) = R? x SO(2), another way to view this operation is to split roto-translation into rotation plus
translation:

(k *sp(2) f)(z,0) :== <-%=E:r,9}k= f>L2{SE|[2)} = (Lo—aLy-ok, f>1L2(51EE2H'

So basically, what happens in group correlation is: We have rotated plannar kernels cross-correlate with each of the input planar features (
Rﬂ_1 (2 — x) comes in here), and then we also have cross-correlation with the rotation part ((6' — @) comes in here); in other words, each
kernels go through a conv operator for the planar part and then mixed with other kernels with different weights (1D conv on the rotation
dimension). Therefore, we have equivariance for both plannar part and rotation part.




Regular Group CNN and SE(2) Equivariance: SE(2) Cross Correlation

(kxsp) f)(z,0) := fz k(Rg Ha' — m))f(m’]d::c’
J/ ‘ The domain of the
l input is R(2)

Still R(2) for lifting

The domain of the operation because

output is lifted to the function is . :
the SE(2) group define on R(2) Planar Rotation to raise
to the feature maps to

the group SE(2)

(k*sg) f)(z,0) : = k(RH (' —=2)|¢0 — 6] mod 2?1:) f(z', 0 )|d8' dz’
‘ The domain of the
j/ ‘ input is SE(2)

Integrate over l J/

The domain of the SE(2) because the Periodic Shift

. . fi ti 1
output is still the d‘:gﬂ?g;;%‘ég Planar Rotation
SE(2) group Reflect the SE(2)

Group




Regular Group CNN and SE(2) Equivariance: SE(2) Cross Correlation

The goal is still
(Rotate the Input) © =— + O (Periodic Shift + Planar Rotation for the Output)

Input: Feature Maps Rotated Input (90 deg)

Kernels Kernels
Result in the same feature map, but
used R, 1 (z' — x) , but recall that, in group correlation, we also have 8’ — § . Now, imagine when the

0° 90° 180° =
rotated 90 degrees.
input 1s rotated 180 deg, the above equivariance does not hold anymore. That’s why we actually need to

~ Rot90 n
Thus, the resulting feature maps will still be rotated and periodically shifted. It seems that so far, we only
have convolution on the theta axis as well.




Regular Group CNN and SE(2) Equivariance: More Intuition

Although the examples are given for the group SE(2), the idea can generalize to
other affine groups (semi-direct product groups).

If we look carefully at how rotational equivariance is achieved, we find that it basically adds a rotation dimension represented by an axis 6,
and thus, rotational equivariance problem now becomes translation equivariance problem which can be solved easily by 1D
convolution/cross-correlation.

translational weight sharing <=  translation group equivariance
affine weight sharing <=  affine group equivariance

Note: Translations and H-transformations form so-called affine groups
Aff(H) := (R%, +) x H.




An overview of actual implementation with nn.Conv2d()

Input Lifting Operation Group Conv Output

Shape: x  x Shape: x  x | | Kernel Size: | | x | | Shape: H x W x | |

A

1 may change

2 depending on padding,
' strides, etc..

\ a _ 2 .
l ; : { 1 : Note: Sizes of Hand W




Regular Group CNN and SE(2) Equivariance: Example

2D image/feature Set of densities/activations Feature maps on R?
map on R? on the group GG

Group conv layer

Projection layer 5

Q Lifting layer

e Each kernel represents a feature e Each kernel recognizes activations e Projection (e.g. maximum) over

e Lifting convolutions generate at locations/transformations g € sub-groups makes the feature
group covariant feature maps G relative to eachother maps invariant w.r.t the transfor-

e The group G contains the set of e The output is covariant w.r.t G- mations encoded in the sub-group
relevant kernel manipulations transformations on the input

1. Lifting Layer (Generate group equivariant feature maps):

o 2D input = 3D feature map with the third dimension being rotation.
2. Group Conv Layer (Group equivariant on the input):

o 3D feature map =- 3D feature map
3. Projection Layer:

o Invariance: 3D feature map = 2D feature map by (e.g. max/avg) pooling over § dimension. Now, it is invairant in & dimension.
o Equivariance: The resulting 2D feature map is rotation equivariant w.r.t. the input.

Image Source: https://uvagedl.github.io/




Results: Group Equivariant Convolutional Networks

Results on datasets with rotations: The rotated
MNIST dataset contains 62000 randomly rotated

handwritten digits. 79CNN: Normal CNN

Network Test Error (%)  pacNNRotation Pooling:
Larochelle et al. (2007) 10.38 = 0.27  PACNN but impose rotation
Sohn & Lee (2012) 4.2 invariance in every layer
Schmidt & Roth (2012) 3.98

72CNN 503 £ 0.0020 PACNN: only rotation
P4CNNRotationPooling  3.21 + 0.0012  nvariance for the output layer,
P4CNN 2.28 + 0.0004  S9uivariance forthe

intermediate layers.

Table 1. Error rates on rotated MNIST (with standard deviation
under variation of the random seed).

p4: Cyclic rotation group of order 4 (0, 90, 180, 270)
p4m: p4 plus 4 horizontal and vertical flips

As expected, Group conv can improve model
performance when (global)symmetries exists.

Results on datasets without rotations: CIFAR10+: moderate
data augmentation with horizontal flips and small translations

Network G  CIFARI0 CIFAR10+ Param.
All-CNN 7.2 9.44 8.86 1.37M
pd 8.84 7.67 1.37M

pdm 7.59 7.04 1.22M

ResNetd44 | 7Z2 9.45 5.61 2.64M
pdm 6.46 4.94 2.62M

Table 2. Comparison of conventional (i.e. Z?), p4 and p4m CNNs
on CIFAR10 and augmented CIFAR10+. Test set error rates and
number of parameters are reported.

The CIFAR dataset is not actually symmetric, since
objects typically appear upright. Nevertheless, we see
substantial increases in accuracy on this dataset,
indicating that there need not be a full symmetry for G-
convolutions to be beneficial.

In the absence of global symmetries, Group Conv can
still improve the performance due to its ability to
capture local symmetries.

Group Equivariant Convolutional Networks; Taco S. Cohen, Max Welling ICML 2016 (https://arxiv.org/pdf/1602.07576.pdf)




Regular Group CNN: Intuition for Benefits and Advantages

The benefits of having equivariant NN architecture can be summarized as follows:
U Equivariance: We have geometric guarantee that the model is equivariant to certain symmetry groups.

U Richer Feature Representations:

Normal CNN kernel learns
roto-translated features, but
they are inherent in Group
CNN.

U Generalization and Efficient Learning: Geometric priors constrain the parameter search space to smaller
region — less parameters, better generalization with less data.

Function Space

Without
Geometric Prior




Conclusion

In this talk, we covered

= The issues in data augmentation to attain symmetries and the motivations of having symmetries in the
model itself.

= Several basic mathematical concepts needed to understand group equivariance.

= Definitions of convolution and cross-correlation and the intuition why they are equivariant under
translations.

= Generalization of the notions of translational equivariance in normal CNNs to building group equivariant
CNNeE.

* The mathematical formulations of group CNNs and the intuitions behind the mathematics.
» The results in the original group CNN paper.

= The intuition of the benefits of having equivariant models, which can be beyond simply achieving
symmetries.




