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Recap: Group Equivariance in ML

Group equivariance in ML models is about enforcing symmetries in our architectures. In a nutshell, group equivariance
means that if the input is transformed, the output will be changed in a predictable way.

A Model Prediction Issues in Data Augmentation:
" x No guarantee of having symmetries in the model
2 —_— —— ‘cat’ % Wasting valuable net capacity on learning symmetries
/A from data
x Redundancy in learned feature representation
Solution:
Model Prediction v" Building symmetries into the model by design!
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Building symmetry into ML has led to major breakthroughs in deep learning:

O Imposing translational symmetry and parameter sharing allowed CNNs to essentially solve computer vision.
O  Group Equivariance conceptualizes CNN success (symmetry exploitation) and generalizes it to tasks with other symmetries.




Recap: Equivariance and Invariance

Equivariance is a property of an operator @ : X — Y (such as a neural network layer) by which it
X b o
®opi(g)=p (9)02,

commutes with the group action:

Invariance is a property of an operator ® : X — Y (such as a neural network layer) by which itjremains unchanged|after the group action:

dop’(g) =2,

« p*(g): group representation action on X
« p¥ (g): group representation action on Y’
» Invariance is a special case of equivariance when pY (g) is the identity.

Invariance Equivariance
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Recap: Regular Group CNN

High-level Ideas:

X/

¢ In CNNs, we scan through many translated version of the image while creating the feature map. If we need to compute
the cross-correlation for a transformed image, we can just go and look up the relevant outputs, because we have
already computed them.
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CNN: One Feature Map Group CNN: Multiple Feature Maps

Image Source: StackOverflow

¢ In Group-CNNs, we follow the same idea, we lift the image to the group space and scan through all the transformed
version of the image.

However, the group size can be large or even infinite (e.g. continuous rotations). It becomes computationally intractable to
lift the image to the group space.




Structure of Today’s Talk

This talk will cover the following topics:
¢ Group Averaging and Frame Averaging

¢ Examples on A Few Common Symmetries




Mathematical Preliminary: Fourier Basis and Series

The set of functions
{1, cos(nb),sin(nd)}> ,
forms a complete orthogonal basis for functions defined on the interval [0, 27r] under suitable conditions.

WLOG, we can write the complete orthonormal basis as:
( 1 cos(f) sin(f) cos(260) sin(260) cos(36) sin(36)
N Y Y Y R

The fourier series for functions defined on the interval
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where ¢g — %, = a“_;b“, = G“J;b“.

The coefficients can be obtained by
21
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Cn = —/ f(0)e ™do, n=0,+1,+2, ...
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Any function defined on Lg(Sl) can be written as a fourier series.




Mathematical Preliminary: Shift Theorem of Fourier Series

Once we have the coefficients ¢,, a translation of f(f?) corresponds to a "phase shift":
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What this implies is that once we have the coefficients ¢,, for f(t_?] we can quickly get the new coefficients for a translated version, f(f? — qf-)
just by a "phase shift".

The Fourier Series can be viewed as a special case of the Fourier Transform when dealing with periodic functions and finite intervals.




Recap: Different Types of Cross Correlations

» Regular Cross Correlation

(kx f)(z) := f k(z' —z)f(z')dz' = /Rd | k() f(2))de' = (ZLok; ) Lo(RY) = {k,.ﬁ’_xﬁh(ﬁd}.
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The domainis the Integral over the
translation group  Translation Group

Translated Kernels

» Lifting Cross Correlation

(k *SE(2) (z,0) := / k(Rg 1(513’ - m))f(ﬂ?r)d-'ﬂl = / -Z, (z.0) k(z')] f(z')dz' = <-2”g {I,Q}k1f>L2(EE}'
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The domain of the
l input is R(2)

Still R(2) for lifting

The domain of the operation because

output is lifted to the function is

the SE(2) group defineonR(2)  The kernel reflects
the SE(2) group

now




Regular Group CNN and SE(2) Equivariance: SE(2) Cross Correlation

(k*sg) f)(z,0) : = ‘ k(RH (' —=2)|¢0 — 6] mod 2?1:) f(z', 0 )|d8' dz’

j/ ‘ ‘ The domain of the

input is SE(2)
Integrate over l J/

The domain of the SE(2) because the Periodic Shift
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output is still the d‘:gﬂ?g;;%‘ég Planar Rotation
SE(2) group Reflect the SE(2)

Group




Regular Group CNN and SE(2) Equivariance: SE(2) Cross Correlation

The goal is still
(Rotate the Input) © =— + O (Periodic Shift + Planar Rotation for the Output)

Input: Feature Maps Rotated Input (90 deg)

Kernels Kernels
Result in the same feature map, but
used R, 1 (z' — x) , but recall that, in group correlation, we also have 8’ — § . Now, imagine when the

0° 90° 180° =
rotated 90 degrees.
input 1s rotated 180 deg, the above equivariance does not hold anymore. That’s why we actually need to

~ Rot90 n
Thus, the resulting feature maps will still be rotated and periodically shifted. It seems that so far, we only
have convolution on the theta axis as well.




Regular Group CNN and SE(2) Equivariance: More Intuition

Although the examples are given for the group SE(2), the idea can generalize to
other affine groups (semi-direct product groups).

If we look carefully at how rotational equivariance is achieved, we find that it basically adds a rotation dimension represented by an axis 6,
and thus, rotational equivariance problem now becomes translation equivariance problem which can be solved easily by 1D
convolution/cross-correlation.

translational weight sharing <=  translation group equivariance
affine weight sharing <=  affine group equivariance

Note: Translations and H-transformations form so-called affine groups
Aff(H) := (R%, +) x H.




An overview of actual implementation with nn.Conv2d()

Input Lifting Operation Group Conv Output

Shape: x  x Shape: x  x | | Kernel Size: | | x | | Shape: H x W x | |

A

1 may change

2 depending on padding,
' strides, etc..

\ a _ 2 .
l ; : { 1 : Note: Sizes of Hand W




Regular Group CNN and SE(2) Equivariance: Example

2D image/feature Set of densities/activations Feature maps on R?
map on R? on the group GG

Group conv layer

Projection layer 5

Q Lifting layer

e Each kernel represents a feature e Each kernel recognizes activations e Projection (e.g. maximum) over

e Lifting convolutions generate at locations/transformations g € sub-groups makes the feature
group covariant feature maps G relative to eachother maps invariant w.r.t the transfor-

e The group G contains the set of e The output is covariant w.r.t G- mations encoded in the sub-group
relevant kernel manipulations transformations on the input

1. Lifting Layer (Generate group equivariant feature maps):

o 2D input = 3D feature map with the third dimension being rotation.
2. Group Conv Layer (Group equivariant on the input):

o 3D feature map =- 3D feature map
3. Projection Layer:

o Invariance: 3D feature map = 2D feature map by (e.g. max/avg) pooling over § dimension. Now, it is invairant in & dimension.
o Equivariance: The resulting 2D feature map is rotation equivariant w.r.t. the input.

Image Source: https://uvagedl.github.io/




Results: Group Equivariant Convolutional Networks

Results on datasets with rotations: The rotated
MNIST dataset contains 62000 randomly rotated

handwritten digits. 79CNN: Normal CNN

Network Test Error (%)  pacNNRotation Pooling:
Larochelle et al. (2007) 10.38 = 0.27  PACNN but impose rotation
Sohn & Lee (2012) 4.2 invariance in every layer
Schmidt & Roth (2012) 3.98

72CNN 503 £ 0.0020 PACNN: only rotation
P4CNNRotationPooling  3.21 + 0.0012  nvariance for the output layer,
P4CNN 2.28 + 0.0004  S9uivariance forthe

intermediate layers.

Table 1. Error rates on rotated MNIST (with standard deviation
under variation of the random seed).

p4: Cyclic rotation group of order 4 (0, 90, 180, 270)
p4m: p4 plus 4 horizontal and vertical flips

As expected, Group conv can improve model
performance when (global)symmetries exists.

Results on datasets without rotations: CIFAR10+: moderate
data augmentation with horizontal flips and small translations

Network G  CIFARI0 CIFAR10+ Param.
All-CNN 7.2 9.44 8.86 1.37M
pd 8.84 7.67 1.37M

pdm 7.59 7.04 1.22M

ResNetd44 | 7Z2 9.45 5.61 2.64M
pdm 6.46 4.94 2.62M

Table 2. Comparison of conventional (i.e. Z?), p4 and p4m CNNs
on CIFAR10 and augmented CIFAR10+. Test set error rates and
number of parameters are reported.

The CIFAR dataset is not actually symmetric, since
objects typically appear upright. Nevertheless, we see
substantial increases in accuracy on this dataset,
indicating that there need not be a full symmetry for G-
convolutions to be beneficial.

In the absence of global symmetries, Group Conv can
still improve the performance due to its ability to
capture local symmetries.

Group Equivariant Convolutional Networks; Taco S. Cohen, Max Welling ICML 2016 (https://arxiv.org/pdf/1602.07576.pdf)




Regular Group CNN: Intuition for Benefits and Advantages

The benefits of having equivariant NN architecture can be summarized as follows:
U Equivariance: We have geometric guarantee that the model is equivariant to certain symmetry groups.

U Richer Feature Representations:

Normal CNN kernel learns
roto-translated features, but
they are inherent in Group
CNN.

U Generalization and Efficient Learning: Geometric priors constrain the parameter search space to smaller
region — less parameters, better generalization with less data.

Function Space

Without
Geometric Prior




Conclusion

In this talk, we covered

= The issues in data augmentation to attain symmetries and the motivations of having symmetries in the
model itself.

= Several basic mathematical concepts needed to understand group equivariance.

= Definitions of convolution and cross-correlation and the intuition why they are equivariant under
translations.

= Generalization of the notions of translational equivariance in normal CNNs to building group equivariant
CNNeE.

* The mathematical formulations of group CNNs and the intuitions behind the mathematics.
» The results in the original group CNN paper.

= The intuition of the benefits of having equivariant models, which can be beyond simply achieving
symmetries.




