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AI for Partial Differential Equations (PDEs) 
and Neural Operators
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PDEs and PDE Solvers
A PDE mathematically describes the behavior of a system by prescribing constraints relating partial derivatives. 

Example: The Wave Equation

where D is the diffusion coefficient. We can visualize, by 
solving the PDE, a disturbance in the medium which will 
then propagate in all directions.

PDE Solvers

Traditional 
Solvers

Neural PDE 
Solvers

- Discretized Methods:
• Finite Element Method
• Finite Volume Method
• Finite Difference Method

- Spectral Methods
- Other Mesh-free Methods

- Physics-informed Neural Networks
• Pure Physics
• Physics + Data

 - Neural Operators
• DeepOnet
• Fourier Neural Operators
• Graph Neural Operators



3

Traditional PDE solvers PINN Neural Operator PDE solver

Ø Solve one instance

Ø Require the explicit form

Ø Speed-accuracy trade-off on 

resolution

Ø Slow on fine grids; fast on 

coarse grids

Ø Suffers from the Curse of 

Dimensionality (CoD)

Ø Solve one instance

Ø Incorporate known physics

Ø Can train without data

Ø Mesh-free

Ø Can be slow to train

Ø Lessen the CoD issue

Ø Learn a family of PDE

Ø Black-box, data-driven

Ø Compatible with physics-

informed ideas

Ø Can be resolution-invariant

Ø Slow to train; fast to evaluate 

(can be several orders of 

magnitudes faster)

Ø Most neural operators suffer 

from CoD
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Neural Networks
A feedforward neural network is given by a compositional function:

Each ℎ consists of a learnable linear transformation and non-linear activation functions such as Tanh, 
Sigmoid, ReLU.

v Universal Approximation Theorems indicate that deep neural networks, DNNs, can approximate most 
functions in the Sobolev space.

Intuition for Universal Approximation for those not familiar with deep learning/neural networks:

(Extensions of) Fourier series can be universal approximators of continuous functions, on 
smooth enough models, they can even get spectral convergence, meaning that the error 
decreases exponentially. However, “the curse of dimensionality” arises; for a desired precision, 
the number of Fourier modes grows exponentially with respect to the input dimension. In most 
practical applications, such as image classification, the input is high-dimensional. Neural 
Networks are universal approximators that can “overcome the curse of dimensionality”.
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PINNs (Solving One Instance)
Consider the following general form of a PDE for �(�):

we wish to approximate �(�) with a neural network, denoted by             . We can train the neural network with 
physics-informed loss. That is, we aim to solve the following optimization problem:

Allocation points in the domain

Difference between the L.H.S. and R.H.S. of the 
differential equation. If the network predicts the 
ground truth, this is going to be 0.

Intuition: We penalize the neural network by the extend to which it violates the PDE/boundary/initial conditions.
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Neural Operators (Solving a Family of PDEs)
§ In PINNs or traditional solvers, we are interested in a function, which solves only one instance of PDEs. 
§ In numerous fields, such as electromagnetism, researchers seek to study the behavior of physical systems 

under various parameters, such as different initial conditions, boundary values, and forcing functions.
§ Solving one instance at a time can be excessively time-consuming!
§ Neural operators approximate the mapping from parameter function space to solution function space. 
§ Once trained, obtaining a solution can be several orders of magnitude faster than numerical methods.
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Parametric PDEs and the Learning Task
A neural operator refers to the use of neural networks to approximate or learn an operator in infinite-dimensional function spaces.
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Summary of Operator Learning Task
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Applications of Operator Learning
Weather Forecasting Carbon Storage Modeling

Source: https://developer.nvidia.com/blog/using-carbon-capture-and-storage-digital-
twins-for-net-zero-strategies/
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Challenge in Operator Learning
Deep neural networks can only take finite-dimensional inputs and produce finite-dimensional outputs:                                          .

There are different ways of thinking about this challenge and approaching the design of neural operators:
q Finite-dimensional Learning: Following the same workflow as numerical schemes, functions are encoded into finite-dimensional 

features.
q Infinite-dimensional Learning: Extending the concept of linear layers in deep neural networks to infinite-dimensions.

Finite-dimensional Features

ContinuumDiscreteness

Infinite-dimensional Features



Finite-Dimensional Features and Learning
As mentioned, neural networks are mappings between finite-dimensional spaces. To adapt neural networks to learn 
operators, a workaround is to use a simplified setting in which functions are characterized by finite-dimensional features. 
An example is to discretize the function with uniform point values, which can then be taken as input to a conventional 
neural network such as the Convolutional Neural Network (CNN).

Input function

Encoder

Uniform Sampling 

Finite dimensional 
input features

Approximator

CNN-based Networks

Finite dimensional 
output features

Reconstructor

Interpolation

Solution function
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Finite-Dimensional Features and Learning
Many numerical schemes can be represented by this diagram as well:

Input function

Encoder

Finite dimensional 
input features

Approximator

Finite dimensional 
output features

Reconstructor

Solution function

How we make choices of encoders, decoders, and approximators gives rise to different neural operators. Moreover, 
different choices may lead to different properties or various pros and cons for a particular neural operator.
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Neural Operator Instantiation: Spectral Neural Operator
(Generalized) Spectral neural operators [1] encodes a function as function coefficients with respect to a predefined function basis 
such as Fourier, Chebyshev, etc..
Given appropriate bases, under fairly general assumptions, function can be written in function series forms:                        .

[1] Spectral neural operators. arXiv, 2022. V. Fanasko and I. Oseledets.

Encoder:                            =

�1 ∙ + �2 ∙

�3 ∙ + �4 ∙

+

+ ∙∙∙

Reconstructor:                             =

�1 ∙ + �2 ∙

�3 ∙ + �4 ∙

+

+ ∙∙∙

Approximator:

Input function
Coefs. with respect to a given basis Coefs. with respect to a given basis 

Solution function

�1
�2
�3
�4
∙∙∙
��

�1
�2
�3
�4
∙∙∙
��

Input Coefs. Output Coefs.
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Neural Operator Instantiation: DeepOnet
In the previous approach, Spectral Neural Operators, we encounter the necessity of understanding the function space within which 
we operate and specifying function bases. However, this requirement can pose limitations from a data-driven standpoint. Often, we 
only have access to the data itself without a priori knowledge of the function space or the optimal function bases.
DeepOnet [2] is an architecture, based the universal approximation theorem for operators [3], that can overcome this limitation; it 
takes point values as inputs and makes the reconstructor learnable by learning some function basis (as well as the coefficients, in a 
sense).

[2] Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. NMI, 2021. Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis.
[3] Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. Chen T, Chen H.

Image From [2]
� is the input function

Encoded Finite-
dimensional feature

Approximator

Reconstructor

Encoder Point Values

Approximator Neural networks that map fixed sensor point values to 
coefficients

Decoder Neural networks that map an inference coordinate point 
to basis function values at these points

The learned solution function is given by:

where                are � basis function learned by the trunk network.

Thus, DeepOnet takes in function values at fixed locations, but we can 
infer the learned solution function at any point in the domain.
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Finite-Dimensional Learning: Summary
There have been a lot of work done in this direction, and to name a few: PCA-Net [4], IAE-Net [5], and CORAL [6].    

[4] Model Reduction And Neural Networks For Parametric PDEs. The SMAI Journal of computational mathematics, Volume 7 (2021), pp. 121-157. Kaushik Bhattachary et al..
[5] Integral autoencoder network for discretization-invariant learning. JMLR, 2022. Yong Zheng Ong, Zuowei Shen, and Haizhao Yang
[6] Operator learning with neural fields: Tackling PDEs on general geometries. arXiv, 2023. Louis Serrano, et al.. 15



Infinite-Dimensional Learning: Introduction
For some of the methods we previously discussed, such as DeepOnet and CNN-based models, the network is highly 
dependent on the resolution of the data and/or sensor locations. When the resolution or input sensor location changes, 
the network might perform differently. For DeepOnet, fixed sensor locations are required, and for CNN-based methods, 
localized fixed size kernels converge to a point-wise operator as the resolution increases.

Another perspective on operator learning is to think in terms of the continuum:

The network should be resolution-invariant and mesh-independent.

In this perspective, we parameterize the model in infinite-dimensional spaces, so it learns continuous functions instead of 
discretized vectors.
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Motivation: Green’s Function Method
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Kernel Integral Operators
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Intuitively, we learn the continuum as we consider the input as a continuous function and parameterize the kernel also in a 
continuous sense. To understand the linearity part, for a one-dimensional input function, if we were to discretize the integral 
operation with a fixed discretization, it is easy to see that it will again become a matrix-vector multiplication. However, in this way, we 
are viewing this process as numerical integration which will converge, under general conditions, to the true integral values.

Integral operators take functions as inputs and produce functions as outputs. Integral operators are also discretization-invariant; we 
can take inputs at different discretization (e.g. 128 × 128 or 256 × 256) representing the same function.

In a standard deep neural network, a layer can be written as:

Here the input, ��, and the output, ��+1, are both vectors.

However, we wish to learn continuous functions instead of discretized vectors. We need to adjust the formulation of our linear layers 
as it has to be able to take functions as input:



Kernel Integral Operators: GNO
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Assuming a uniform distribution of �, the integral can be approximated by a discrete sum

�(�) denotes the neighbors of �. If we construct a graph based on the physical domain using these sensor points, this 
integration can be viewed as message passing on the graph, with message passing representing the kernel integration. The 
Graph Neural Operator [7] has been developed with this perspective in mind.

For the full integration, the graph is a �2 fully connected graph, we may redefine the connectivity to make it more efficient:

Here �(�,  �) defines the neighbors of � to be within a certain radius � for connectivity. Through 
layers of message passing, information from one node will eventually propagate through the entire 
graph.

By defining neighbors based upon radius, the graph construction and message passing is resolution-
invariant.

[7] Neural operator: Graph kernel network for partial Differential equations. arXiv, 2020. Zongyi Li, 
et al..



Kernel Integral Operators: FNO
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While GNO may encounter challenges related to computational complexity and accuracy, FNO, another widely 
recognized kernel integral operator [8], stands out for its efficiency and precision. FNO imposes translation equivariance 
on the kernel:                            . This is a natural choice from the perspective of fundamental solutions. As a result, the 
kernel integral operator becomes a (global) convolution operator, which can be solved in the Fourier domain for efficiency. 

“Filters in convolution neural networks are usually local. They are good to capture local patterns such as edges and 
shapes. Fourier filters are global sinusoidal functions. They are better for representing continuous functions.”

[8] Fourier neural operator for parametric partial differential equations. ICLR, 2021. Zongyi Li, et 
al..
Image Source: Stanford CS159: Representation Learning for Science



Kernel Integral Operators: FNO
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Input 
Function

Fourier 
Transform

Input Fourier 
Coefficients

Point-wise
Multiplication

Output Fourier 
Coefficients

Inverse Fourier
Transform

Solution function

Convolution
Kernel

Why Fourier:
1. Whereas approximating the full integral incurs a complexity of O(n2), the Fast Fourier Transform (FFT) operates with 

a complexity of O(n ∙ logn).
2. We can learn the kernel in the Fourier domain directly (convolution is point-wise multiplication in frequency domain).
3. Fourier transform is discretization invariant.
4. By using an orthogonal basis (Fourier) to represent the data, we can facilitate information compression, thereby 

further enhancing efficiency.



FNO: Infinite-dimensional Learning?
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While FNO can accept inputs of varying resolutions, its kernel remains fixed in size within the frequency domain. Later 
works [9] also suggest that FNO struggles with learning high-frequency modes in the frequency domain or local 
information in the spatial domain. While FNO operates as a kernel integral operator, the truncation of Fourier modes 
makes FNO to span both finite-dimensional and infinite-dimensional learning paradigms.
To harness the power of the Fast Fourier Transform (FFT), FNO is most efficient on rectangular domains with uniform 
sampling of sensor points, a condition that can be restrictive in practical applications. 

It is desirable to have a neural operator with the following properties:

1. Fast and generalizable
2. Capable of operating on arbitrary domain shapes
3. Able to takes point values freely (more than resolution-invariant, there should be no restriction on the number or 

locations of sensor points)
4. Scalable with polynomial (instead of exponential) dependence in input dimensions
5. Efficient in learning both local and global information
6. Grounded in theoretical reasoning behind its design (Universal Approximation)

[1] Spectral neural operators. arXiv, 2022. V. Fanasko and I. Oseledets.
[6] Operator learning with neural fields: Tackling PDEs on general geometries. arXiv, 2023. Louis 
Serrano, et al..
[9] Neural Operators with Localized Integral and Differential Kernels. arXiv, 2024. 



Future Works
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o Neural Operators that meets the requirements outlined previously

o Efficient neural operators on Riemannian manifolds with geometric priors

o Transformer-based neural operator designs

o LLM-guided operator learning 

o Neural operator designs with physics-constraints such as symmetries/equivariances

o Apply operator learning to practical applications in sciences and engineering

o Tackling aliasing errors within the neural network but also from the data

o …
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