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About Me

e Now: 4™ year Ph.D. student in Applied Mathematics supervised by Professor Yi Liu

 Past: B.S. from Stony Brook in Pure Mathematics and Applied Mathematics

* Research Areas: Al for Science
» Generative (Probabilistic) Models
» Equivariant Neural Networks

» Large Language Models

* Homepage: https://wenhangao?1.github.i0/
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Preliminary: Artificial Intelligence

* Artificial intelligence (Al) focuses on creating systems capable of autonomously
performing tasks that typically require human intelligence

* Recognizing patterns

* Understanding natural language

28 DAYS LATER

* Reasoning

* Making decisions 3 UL lanfenen

COMING SO0ON

"Ex machina" is the second half of the Latin phrase Deus ex machina, which translates to "God from the machine".
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Preliminary: Functions

* Mathematically, a function is a rule that assigns each input from a set (the domain) to a
deterministic output in another set (the codomain).

* Formally:
f: X -Y

* X: domain (the set of possible inputs)
* Y: codomain (the set of possible outputs)
* For every x € X, there exists a unique y € Y such that y = f(x)
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Preliminary: Learning Functions

* Why do we care about functions? A lot of tasks can be described as learning functions.
* Image Classification: Image — Label
* Image Segmentation: Image — Pixel-wise Labels
* Machine Translation: Sentence in Language A + Sentence in Language B
* In practice, computers only process numerical values.
* Input: Image — represented as a 3D tensor of pixel values
e ¥ E RHXWXC
* Output: Class — a probability vector over classes
 y € RX, then pick arg max(y)
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Preliminary: Deep Neural Networks

* A prominent example of Al systems 1s the (deep) neural network (NN), which can be
thought of as a universal function approximatorl!,

* Mathematically, a feedforward neural network 1s a function composition:

f(x) = f(L) o f(L—l) 0 aee 0 f(l)(x),
» Each f consists of a linear transformation (matrix multiplication and bias) and a nonlinear
activation function. Deep Neural Network

input layer hidden layer 1 hidden layer 2 hidden layer 3

= [1] Assuming measurable and under mild regularity conditions
BEYOND Image source: https://botpenguin.com/glossary/deep-neural-network
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Preliminary: Function Basis

* In functional analysis, we often describe functions in terms of a function basis:

FO) =) i),

l
» E.g polynomial expansion, Fourier expansion

* NN is analogous to having an adaptive/learnable function basis.
* One layer of a feedforward neural net can be written as

f(x) = z o(w/x + b;)
j=1
* The basis functions are ¢;(x) = a(w]-Tx + bj).

FAR
BEYOND



q\\\‘ Stony Brook University

Preliminary: Function Fitting

* Function fitting 1s the process of finding a function that best describes a set of data points.
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Need more basis functions

Trigonometric basis: a little overfitting

Need more data

* Functions for many tasks are much more complex!
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Preliminary: Learning Representation

* How NN learns — function fitting with a learnable function basis
* Training data — Observation points
* Width of a Layer — Number of basis functions (e.g. degree in polynomial fitting)
* Depth of NN — Improved function bases through hierarchical basis construction
* These basis functions can be called features or representations

low-level features mid-level features high-level features

FAR Image source: https://tvirdi.github.10/2017-10-29/cnn/
BEYOND
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Preliminary: Challenges with NN

* Training data — Observation points

* We need a sufficient, often large, amount of training data.

* Network designs — Better function basis

* We need to design network architectures tailored to the tasks at hand.

* Learned basis — Black-box representations

* We need to ensure that the network 1s trustworthy.

My research solves these challenges: data, design, and trustworthiness.
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Al for Science (Al4Sci)

Al4Sci refers to the use of recent advances 1n artificial intelligence and deep learning to solve
problems 1n sciences: computational chemistry, PDEs, material science, drug design, etc..
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Best Time for AI4Sci

Nobel Prize in Physics = Al
Al pioneers John J. Hopfield and Geoffrey E. Hinton for their contribution to AI and ML
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Best Time for AI4Sci

g &) NOBELPRISET | KEMI 2024 -
/497 THE NOBEL PRIZE IN CHEMISTRY 2024 L

EDISH ACADEMY OF SCIENCES

‘ D;vid Baker Demis Hassabis John M. Jumper
University of Washington Google DeepMind Google DeepMind
USA United Kingdom United Kingdom

"fér datorbaserad proteindesign” "foér proteinstrukturprediktion”

“for computational protein design” for protein structure prediction”

Nobel Prize in Chemistry = Al4Science

Demis Hassabis, and John Jumper for their contribution to AlphaFold - protein structure prediction with Al
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My Research

» Discriminative Models:
Learn patterns from data and select the best fit

S — Dipole moment
' u=1.69D

» Generative Models:
Learn patterns from data and create new possibilities

Give a new drug
that can cure ...

e DISCRIMINATIVE
MODELS
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My Research: Discriminative Models

» Discriminative Models:
Learn patterns from data and select the best fit

K>S s Dipole moment
' u=1.69D

» Generative Models:
Learn patterns from data and create new possibilities

Give a new drug
that can cure ...

o* / DISCRIMINATIVE
MODELS
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Neural PDE Solvers

* A partial differential equation (PDE) models continuum systems through relations among
partial derivatives.

* Solving PDEs is central to nearly all scientific and engineering disciplines.

Navier Stokes Equation (Fluid Dynamics)
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PINNs (Solving One Instance)

Consider the following general form of a PDE for u(x):

{ Du(x) = f(x), in (),
Bu(x) = g(x), on 0f),

we wish to approximate u(x) with a neural network, denoted by ¢ (x; @) the following
optimization problem:

0" = argmin £(6) : = argmin [ Do(: 6) — / (@)} + A|B(:6) — 9()|

Intuition: We parametrize the solution with a neural network (mesh-free!!!) and penalize the
neural network by the extent to which it violates the PDE/boundary/initial conditions (no data
needed!!!).

Barron’s Theorem — Polynomial Complexity — Solving High-dimensional PDEs
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My Contribution

* AL-PINN, JCP 2023 (Data):

»PINN still faces significant CoD issues in high-dimensions.

» We need to sample a lot of collocation points (a lot of data).

» Mitigate this by proposing a parallelizable self-normalized active learning algorithm
» Efficient on GPUs.

Squared Residual Error Plot 500 points generated by Self-normalized Sampling
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Neural Operators (Solving a Family of PDEs)

* Modeling physical systems under various parameters.

= A mapping from one function to another (data-driven!!!).

= Several orders of magnitude faster than numerical methods.

Example Usage in Climate Modeling: -.
Current atmospheric features — Prediction for the next few days

l

Predicting natural disasters and saving lives!
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My Contribution

Loml@umons
CROP, ICLR 2025 (Design):

Rebut the misunderstanding on discretization-invariance
Improved learning on multi-scale features

Neural
Operator Operator
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| Difference between the Output Predictions
1 Caused by Discretization Mismatch Error
'

Discretization Mismatch Error

e CT-FNO, TMLR 2024 (Design):

‘ o I g ' Incorporate symmetry priors into neural operators

Generalization to various irregular domains
DS-FNO, TMLR 2025 (Design):

Improved expressivity (learning capabilities) of neural operators

59340"3{5"‘ 'Mo'dels

\

All Continuous Operators

Equivariant Continuous Operators

. ini
Convolution-based —_—
Expressive Xpressi
Operators Power

Spatial
Dependence

\b Hamiltonian
Dynarmics
Explainable? & !
=i
{

= Divergence-free
Field

Neural
Operators

X-NO, Under Review (Trustworthiness):

b
Functional Domain Models
-

g Reveal if neural operators can learn the hidden dynamics in data

Does It Learn
Hidden Physics?
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Science at Different Scales

* The world 1s made of particles
* Macro-level — Continuum — PDEs to describe physical systems

 What about micro-levels?

= S / 8 r .= D » . .
- o 4 S > 4 ~

Continuum AtOIIllSth
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Representation of Atomistic Systems

Task Description:
Given an atomistic system, predict certain
property values of this system. H H

Representation of Atomistic Systems:

(-1,3,3)

(1,-1,2)

HooH — \  /
0 (0,0,0) (1,2,0)
Dipole moment H,0, as 1D H,0, as 2D H,0, as 3D
U= 1.69D SMILE strings (planar) graphs (geometric) graphs
» (Chemistry) The 3D geometric configuration is Model MAE(Lower, better)
crucial in determining properties. GIN-Virtual 0.2371 ——> Best 2D GNN
SchNet 0.1511
»3D representations outperform their 2D DimeNet++  0.1214 3D GNNs outperform 2D
counterparts by a large margin. SphereNet 0.1182 GNNs by a large margin

ComENet 0.1273
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Learning with Geometric Representation

* Geometric representation — different designs of neural networks and different learning patterns

A lot of existing

» Symmetries: Roto-translation changes the coordinates, but does not change the molecule «—— .
works on this already

» Predictions can be completely different!

»Learning Patterns: Tensorial physical quantities (e.g. chemical forces, fields)

H
«C

J —— Learning chemical interaction patterns <—— My Vision
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My Contribution

AL3DGraph, NeurIPS 2024 (Data):
Select the most informative training samples
Novel diversity and uncertainty metrics for 3D molecules
Reduce data by 50% while even improving performance

RISE, ICML 2025 (Trustworthiness):

GNNExplainer PGExplainer LRI-Bemoulli . . .
Making Al models transparent to scientists
M Reveal the learning patterns of geometric GNNs
4 . . . . .
J J Potential extension to discover unknown interactions
RISE Actual Chemical Bonds
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Heading Into the Era of Generative Al

» Discriminative Models:
Learn patterns from data and select the best fit

— Dipole moment
‘ u=1.69D

» Generative Models:
Learn patterns from data and create new possibilities

Give a new drug
that can cure ...

ot / DISCRIMINATIVE
MODELS
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Introduction to Generative Models

Generative Al learns the underlying patterns of data to discover new possibilities beyond what
already exists.

> (Statistical) Generative Models:

> Learn distributions from data

A probability distribution

p(x) me calar probability value p(x)

» Generation by sampling
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Introduction to Generative Models

Q) Learning p(x)?
» Extremely inefficient: the target distribution is “peaky” and occupies a vanishingly small
fraction of space.
Alternatives:
» Inverse Transform Sampling (e.g. VAE, Diffusion, Flow):
»x = f(z) where z ~ p(z) is simple (e.g., Gaussian).
» Data — Noise — Data
» We approximate f(z) with a neural network.
» Autoregressive Models (e.g. LLMs, PixelCNN)

Pp() =Ilip(x; 1 x<;)
» Generation by predicting one token/pixel/etc.. at a time.
» The neural network learns similarly to a classification problem.
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Introduction to Diffusion Models

 Diffusion models gradually add noise to data until it becomes pure Gaussian noise, then train
a neural network to reverse the process by denoising step by step.

* Generation: Pure Gaussian Noises — Realistic Data Samples

Data Destructing data by adding noise ——> Noise

Image source: https://arxiv.org/pdf/2209.00796v 13
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3D Molecular Diffusion

» Forward Process: Adding noise to gradually corrupt molecular structures.

» Reverse Process: Forming a coarse structure first and then fine-grained adjustments
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S1ze-induced Inconsistency

* Larger molecules — Less data and higher structural complexity — Worse performance?

- |
23 24 25

Amount of Training Data v.s. Quality of Generated Molecules
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S1ze-induced Inconsistency

» Reverse Process: Forming a coarse structure first and then fine-grained adjustments

t=20 t =100 t =200 t =300

» The identity of the larger molecule is preserved longer/recovered earlier.
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S1ze-induced Inconsistency

» Larger molecules stabilize earlier in the generative process.
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Convergence of Shape Alignment (v,) by Size
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These numbers reflect how quickly the denoising trajectory “lines up” with the final molecule.
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Scaling the Prior

» We use Gaussian distributions of “smaller variance” for smaller molecules (Scaling the Prior).

Convergence of Shape Alignment (v,) by Size

Before: s 1w Improved generation quality for 3D molecular diffusion:

Size 12

Size 15 0.22 QM9 GEOM-Drugs
Size 19 0.29 b
§size2 030 : Atom Molecule Valid Valid x Atom  Valid
5 size 30- oo 5 Stab (%)  Stab (%) (%) Unique (%) Stab (%) (%)
i £ Dataset 99.00 95.20 97.70 97.70 86.50  99.90
Sizes4- 024 055 G-SchNet 95.70 68.10 85.50 80.30 - -
Size64- 026 056 ENF 85.00 84.90 40.20 39.40 - -
Size75- 026  0.58 EDM-bridge 98.80 84.60 92.00 90.70 82.40 92.80
09T 08T 07T 06T 05T 04T 03T 027 EquiFM 98.90 88.30 94.70 93.50 84.10 98.90
Convergence of Sh;'pm: ;I?gnment (v2) by Size GeoBEN 99.08 90.87 95.31 92.96 85.60 92.08
After: et converoene * 10 “EDM 98.70 82.00 91.90 90.70 8130 92.60
S oo I EDM-StP 98.83+0.03 88.07+0.22 94.41+0.08 92.63+0.14 8411  95.59
Size15- 020  0.63 o8 RADM 98.50 87.30 94.10 91.70 85.00 99.30
, Sizel9- 026 063 RADM-StP 98.59+0.01 87.62+0.10 94.194+0.17 91.5140.15 85.27 99.49
Hsize24- 026 064 GeoLDM 98.90 89.40 93.80 92.70 84.40 99.30

E-" Size 30 - 0.28 0.66
S size37- 030 065
Y Sizeds- 030 062
Size54- 024  0.57
Size64- 028  0.55
Size75- 033 057

GeoLDM-StP | 99.08+0.05 90.70+0.22 95.411+0.16 93.49+0.16 86.78 99.37
Baseline results are taken from original works, some only have one decimal places available.

SOTA performance; improving simple diffusion

models to even outperform complicated models

Shape Alignment

0.97 0.8T 07T 0.6T 0.5T 0.4T 0.3T 0.2T7
Time -0
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[.LI. Ms for Science

» Why LLM-assisted Scientific Discoveries?

Trained on various datasets

Wikipedia Web Pages

Books

Scientific
Articles

Code Articles

Professsing

REASONING

RECITING

Absorbing
Knowledge

» Challenges:
» Lack of domain specialized knowledge

Reasoning Using Tools Collaboration

» Difficulty handling multimodal inputs
» Collaboration with domain tools or human experts

FAR
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LLM-Assisted Drug Editing

Can you make the molecule from rdkit import Chem
O=C(NC[C@H]1CCCO1)c1cccccINTCCCC1=0 more soluble in water? from rdkit.Chem import Crippen
Please provide a short reasoning and give the result as a SMILES string. ~ # Define molecules

input_mol = Chem.MolFromSmiles("0=C(NC[C@H]1CCCO1)clccccclNICCCC1=0")
output_mol = Chem.MolFromSmiles("0=C(NC[C@H]1CCCO1)clccc(0)cclNICCCC1=0")

To improve water solubility, we generally try to: # Compute logP

. . . input_logp = Crippen.MollLogP(input_mol)
* Increase polarity by adding polar functional groups (e.g., hydroxyl, carboxyl, sulfonate). output_logp = Crippen.MollLogP (output mol)

¢ Decrease hydrophobicity by disrupting extended aromatic or aliphatic hydrophobic surfaces. if Chem.SanitizeMol(output_mol)==Chem.SanitizeFlags.SANITIZE_NONE:
_ ) ) _ N ) print("Output molecules is valid")
Your molecule has multiple aromatic and cyclic amide features that reduce solubility. A straightforward else:
modification is to add a hydroxyl group to the phenyl ring, which increases polarity without drastically print("Output molecules is invalid")

print("Input logP:", input_logp)
print("Output logP:", output_logp)
print("AlogP (output - input):", output_logp - input_logp)

changing the structure.

Modified Molecule

Output molecules is valid

Input logP: 1.7222

. Output logP: 1.4278

Resulting SMILES: AlogP (output - input): -8.2944

| added an —OH group at the para position of the phenyl ring.

mathematica (P Copy code Lower logP — better water solubility

0=C(NC[C@H]1CCCO1)clccc(0)ccINICCCC1=0

FAR
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Drug Editing

JHuman Experts:
dTry small changes to molecules
Get feedback from experiments or tests
Learn from mistakes and successes over time
UEdit — Get Feedback — Learn and Self-reflect — Improve — Edit

L Existing LLM-Assistants:
Try small changes to molecules

JGet informed whether the edit is successful
UEdit — Flag Success — Edit

FAR
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Our Pipeline: F2R

-
ChatDrug/ChemReasoner

Can you make the molecule
[CC(=0)Cclcce(Br)c(F)cl ] mummppy

more soluble in water?

® =

25|

Can you make the molecule
[CC(=0)Cclcce(Br)c(F)cl ] -
more soluble in water?
Task

S

LLM Agent

Domain Feedback

Extlact SAR

Reasomng

Task LLM Agent Success Indicator External
L Guidance
( Only Actions
RL-Guider \ |
Can you make the molecule 9 — Training
[CC(=0)Cclcee(Br)c(F)cl | mummpy —— -
more soluble in water? Actions
Task LLM Agent Success Indicator RL-Agent
( Actions and Reasoning
Feedback to Reasoning |

Historical
Knowledge
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Our Pipeline: Feedback to Reasoning

» Lack of domain specialized knowledge
> We provide detailed feedback to the LLM to inform its failures «— "7/ *

single round
Improve across
different sessions

» We incorporate a memory mechanism for LLM to learn from past experiences «—

» Difficulty handling multimodal inputs
» Feedback is in text format through carefully designed templates

» Collaboration with domain tools

» Autonomous collaboration with computational tools for the feedback without human
intervention
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Our Pipeline: Feedback to Reasoning

ChatGPT-4.1 Gemini-2.5-Flash

Task A | Base Chat Chem RL- F2R Base  Chat Chem RL- FIR

LLM Drug Reasoner Guider LILM Drug Reasoner Guider
More soluble in water 0 | 8L.00 83.50 83.50 85.50 [ 99.00 | 85.00 &1.00 84.00 82.50 § 99.00
0.5 | 84.00 81.50 84.00 83.50 [ 96.00 | 80.50 81.50 76.50 79.50 § 96.00
Less soluble in water 0 | 85.00 85.50 84.50 85.50 | 99.00 | 95.50 97.00 98.00 91.50 § 99.00
0.5 | 72.00 56.00 76.50 63.50 | 81.50 | 87.50 87.00 88.50 87.00 § 95.50
More like a drug 0 | 46.00 61.50 73.50 47.50 § 69.00 § 79.00 77.50 79.50 73.50 § 83.50
0.5 | 6.00 20.00 18.00 8.50 21.00 § 16.50 27.00 22.50 19.50 | 30.50
Less like a drug 0 | 68.50 61.50 72.50 65.00 § 89.00 | 70.50 68.50 85.50 69.50 § 78.50
0.1 | 16.50 28.50 52.00 24.50 § 63.50 | 44.00 43.00 67.00 53.50 § 65.00
Higher permeability 0 | 3L.50 53.50 81.50 47.50 §94.50 | 92.50 91.00 91.00 93.00 § 97.00
10 | 19.50 36.50 62.50 34.00 § 74.00 | 52.50 62.00 63.00 61.50 § 79.00
Lower permeability 0 | 87.00 85.50 88.00 86.50 | 99.00 | 86.00 86.50 83.50 84.50 § 99.00
10 | 87.00 83.50 88.50 86.50 | 97.50 | 85.00 81.50 82.00 84.50 § 98.50
More hydro-bond acceptors 0 | 74.00 69.00 76.50 77.50 §97.00 | 80.50 82.50 78.50 74.50 § 99.00
‘ 1 19.00 23.00 34.00 20.50 § 42.50 | 44.00 44.00 57.00 44.50 § 68.50
More hydro-bond donors 0 | 80.00 78.00 85.50 81.00 §97.50 | 74.50 70.50 75.00 70.50 § 98.00
1 13.00  26.50 19.50 22.50 [ 41.50 § 16.50 15.00 47.00 15.50 | 52.50

Improve the performance significantly
Achieve even 99% success rates for some tasks
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Talk Outline

Introduction to Al and Neural Networks
Introduction to AI4Sci and My Research

Discriminative Models:
* Al for Continuum Systems (PDEs)
* Physics Informed Neural Networks
* Neural Operators
* Al for Atomistic Systems

Generative Models
* Introduction to Generative Models

e Diffusion Models for Molecular Generation
 LLMs for Science
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