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Preliminary: Artificial Intelligence

• Artificial intelligence (AI) focuses on creating systems capable of autonomously

performing tasks that typically require human intelligence

• Recognizing patterns

• Understanding natural language

• Reasoning

• Making decisions

"Ex machina" is the second half of the Latin phrase Deus ex machina, which translates to "God from the machine".



Preliminary: Functions

• Mathematically, a function is a rule that assigns each input from a set (the domain) to a 
deterministic output in another set (the codomain).

• Formally:
𝑓: 𝑋 → 𝑌

• 𝑋: domain (the set of possible inputs)

• 𝑌: codomain (the set of possible outputs)

• For every 𝑥 ∈ 𝑋, there exists a unique 𝑦 ∈ 𝑌 such that 𝑦 = 𝑓 𝑥



Preliminary: Learning Functions

• Why do we care about functions? A lot of tasks can be described as learning functions.

• Image Classification: Image ↦ Label

• Image Segmentation: Image ↦ Pixel-wise Labels

• Machine Translation: Sentence in Language A ↦ Sentence in Language B

• In practice, computers only process numerical values.

• Input: Image → represented as a 3D tensor of pixel values

• 𝑥 ∈ 𝑅𝐻×𝑊×𝐶

• Output: Class → a probability vector over classes

• 𝑦 ∈ 𝑅𝐾 , then pick argmax 𝑦



Preliminary: Deep Neural Networks

• A prominent example of AI systems is the (deep) neural network (NN), which can be 

thought of as a universal function approximator[1].

• Mathematically, a feedforward neural network is a function composition:

𝑓 𝑥 = 𝑓 𝐿 ∘ 𝑓 𝐿−1 ∘ ⋯ ∘ 𝑓 1 𝑥 ,

➢Each 𝑓 consists of a linear transformation (matrix multiplication and bias) and a nonlinear 

activation function.

[1] Assuming measurable and under mild regularity conditions

Image source: https://botpenguin.com/glossary/deep-neural-network



Preliminary: Function Basis
• In functional analysis, we often describe functions in terms of a function basis:

𝑓 𝑥 =෍

𝑖

𝑐𝑖𝜙𝑖 𝑥 .

• E.g. polynomial expansion, Fourier expansion

• NN is analogous to having an adaptive/learnable function basis.

• One layer of a feedforward neural net can be written as

𝑓 𝑥 =෍

𝑗=1

𝑚

𝜎 w𝑗
⊤𝑥 + 𝑏𝑗

• The basis functions are 𝜙𝑗 𝑥 = 𝜎 w𝑗
⊤𝑥 + 𝑏𝑗 .



Preliminary: Function Fitting
• Function fitting is the process of finding a function that best describes a set of data points.

Both Underfitting
Polynomial basis: overfitting

Trigonometric basis: a little overfitting

Polynomial basis: underfitting

Trigonometric basis: a good fit

Need more basis functions A good basis is importantNeed more data

• Functions for many tasks are much more complex!



Preliminary: Learning Representation
• How NN learns ⟶ function fitting with a learnable function basis 

• Training data ⟶ Observation points

• Width of a Layer  ⟶ Number of basis functions (e.g. degree in polynomial fitting)

• Depth of NN  ⟶ Improved function bases through hierarchical basis construction

• These basis functions can be called features or representations

Image source: https://tvirdi.github.io/2017-10-29/cnn/



Preliminary: Challenges with NNs

• Training data ⟶ Observation points

• We need a sufficient, often large, amount of training data.

• Network designs ⟶ Better function basis

• We need to design network architectures tailored to the tasks at hand.

• Learned basis ⟶ Black-box representations

• We need to ensure that the network is trustworthy.

My research solves these challenges: data, design, and trustworthiness.
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AI for Science (AI4Sci)
AI4Sci refers to the use of recent advances in artificial intelligence and deep learning to solve 
problems in sciences: computational chemistry, PDEs, material science, drug design, etc..



Best Time for AI4Sci

Nobel Prize in Physics → AI

AI pioneers John J. Hopfield and Geoffrey E. Hinton for their contribution to AI and ML



Best Time for AI4Sci

Nobel Prize in Chemistry → AI4Science

Demis Hassabis, and John Jumper for their contribution to AlphaFold - protein structure prediction with AI



My Research

➢Discriminative Models: 

Learn patterns from data and select the best fit

➢Generative Models:

Learn patterns from data and create new possibilities

Dipole moment

𝜇 = 1.69𝐷

Give a new drug 

that can cure …
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Neural PDE Solvers
• A partial differential equation (PDE) models continuum systems through relations among 

partial derivatives. 

• Solving PDEs is central to nearly all scientific and engineering disciplines.

Navier Stokes Equation (Fluid Dynamics)



PINNs (Solving One Instance)
Consider the following general form of a PDE for 𝑢(𝒙):

we wish to approximate 𝑢 𝒙 with a neural network, denoted by 𝜙 𝒙; 𝜽 the following 
optimization problem:

Intuition: We parametrize the solution with a neural network (mesh-free!!!) and penalize the 

neural network by the extent to which it violates the PDE/boundary/initial conditions (no data 

needed!!!).

Barron’s Theorem → Polynomial Complexity → Solving High-dimensional PDEs 



My Contribution

• AL-PINN, JCP 2023 (Data):

➢PINN still faces significant CoD issues in high-dimensions.

➢We need to sample a lot of collocation points (a lot of data).

➢Mitigate this by proposing a parallelizable self-normalized active learning algorithm 

➢Efficient on GPUs.



Neural Operators (Solving a Family of PDEs)

▪Modeling physical systems under various parameters.

▪A mapping from one function to another (data-driven!!!). 

▪Several orders of magnitude faster than numerical methods.

Example Usage in Climate Modeling:

Current atmospheric features → Prediction for the next few days

↓

Predicting natural disasters and saving lives! 



My Contribution
CROP, ICLR 2025 (Design): 

Rebut the misunderstanding on discretization-invariance

Improved learning on multi-scale features

CT-FNO, TMLR 2024 (Design): 

Incorporate symmetry priors into neural operators

Generalization to various irregular domains

DS-FNO, TMLR 2025 (Design): 

Improved expressivity (learning capabilities) of neural operators

X-NO, Under Review (Trustworthiness): 

Reveal if neural operators can learn the hidden dynamics in data



Science at Different Scales
• The world is made of particles

• Macro-level → Continuum → PDEs to describe physical systems

• What about micro-levels?

Continuum Atomistic
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Representation of Atomistic Systems

➢(Chemistry) The 3D geometric configuration is 

crucial in determining properties.

➢3D representations outperform their 2D 

counterparts by a large margin.

Best 2D GNN

3D GNNs outperform 2D 

GNNs by a large margin 

(Lower, better)

Representation of Atomistic Systems:Task Description:

Given an atomistic system, predict certain 

property values of this system.

Dipole moment

𝜇 = 1.69𝐷



Learning with Geometric Representation
• Geometric representation → different designs of neural networks and different learning patterns

➢ Symmetries: Roto-translation changes the coordinates, but does not change the molecule

➢Learning Patterns: Tensorial physical quantities (e.g. chemical forces, fields)

A lot of existing 

works on this already

Predictions can be completely different!

Learning chemical interaction patterns My Vision



My Contribution

AL3DGraph, NeurIPS 2024 (Data): 

Select the most informative training samples

Novel diversity and uncertainty metrics for 3D molecules

Reduce data by 50% while even improving performance

RISE, ICML 2025 (Trustworthiness): 

Making AI models transparent to scientists

Reveal the learning patterns of geometric GNNs

Potential extension to discover unknown interactions



Heading Into the Era of Generative AI

➢Discriminative Models: 

Learn patterns from data and select the best fit

➢Generative Models:

Learn patterns from data and create new possibilities

Dipole moment

𝜇 = 1.69𝐷

Give a new drug 

that can cure …
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Introduction to Generative Models
Generative AI learns the underlying patterns of data to discover new possibilities beyond what 
already exists.

➢ (Statistical) Generative Models:

➢Learn distributions from data

➢Generation by sampling



Introduction to Generative Models
Learning 𝑝(𝑥)?
➢Extremely inefficient: the target distribution is “peaky” and occupies a vanishingly small 

fraction of space.

Alternatives:

➢Inverse Transform Sampling (e.g. VAE, Diffusion, Flow): 

➢𝑥 = 𝑓 𝑧 where 𝑧 ∼ 𝑝 𝑧 is simple (e.g., Gaussian). 

➢Data → Noise → Data

➢We approximate 𝑓 𝑧 with a neural network.

➢Autoregressive Models (e.g. LLMs, PixelCNN)

➢𝑝 𝑥 = ς𝑖 𝑝 𝑥𝑖 𝑥<𝑖
➢Generation by predicting one token/pixel/etc.. at a time.

➢The neural network learns similarly to a classification problem.
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Introduction to Diffusion Models
• Diffusion models gradually add noise to data until it becomes pure Gaussian noise, then train 

a neural network to reverse the process by denoising step by step.

• Generation: Pure Gaussian Noises → Realistic Data Samples

Image source: https://arxiv.org/pdf/2209.00796v13



3D Molecular Diffusion
➢Forward Process: Adding noise to gradually corrupt molecular structures.

➢Reverse Process: Forming a coarse structure first and then fine-grained adjustments



Size-induced Inconsistency
• Larger molecules → Less data and higher structural complexity → Worse performance? 



Size-induced Inconsistency
➢Reverse Process: Forming a coarse structure first and then fine-grained adjustments

➢The identity of the larger molecule is preserved longer/recovered earlier.



Size-induced Inconsistency
• Larger molecules stabilize earlier in the generative process.

These numbers reflect how quickly the denoising trajectory “lines up” with the final molecule.



Scaling the Prior

➢We use Gaussian distributions of “smaller variance” for smaller molecules (Scaling the Prior).

Before:

After:

Improved generation quality for 3D molecular diffusion:

SOTA performance; improving simple diffusion 

models to even outperform complicated models
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LLMs for Science
➢Why LLM-assisted Scientific Discoveries?

➢Challenges:

➢Lack of domain specialized knowledge

➢Difficulty handling multimodal inputs

➢Collaboration with domain tools or human experts

Absorbing 

Knowledge
Reasoning Using Tools Collaboration



LLM-Assisted Drug Editing

Lower logP → better water solubility



Drug Editing
❑Human Experts:

❑Try small changes to molecules

❑Get feedback from experiments or tests

❑Learn from mistakes and successes over time

❑Edit → Get Feedback → Learn and Self-reflect → Improve → Edit 

❑Existing LLM-Assistants:

❑Try small changes to molecules

❑Get informed whether the edit is successful

❑Edit → Flag Success → Edit



Our Pipeline: F2R



Our Pipeline: Feedback to Reasoning

➢Lack of domain specialized knowledge

➢We provide detailed feedback to the LLM to inform its failures

➢We incorporate a memory mechanism for LLM to learn from past experiences

➢Difficulty handling multimodal inputs

➢Feedback is in text format through carefully designed templates

➢Collaboration with domain tools

➢Autonomous collaboration with computational tools for the feedback without human 

intervention

Improve in a 

single round

Improve across 

different sessions



Our Pipeline: Feedback to Reasoning

Improve the performance significantly

Achieve even 99% success rates for some tasks
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