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I’m a third year Ph.D. student in Applied Mathematics at Stony Brook University supervised 

by Professor Yi Liu.

Previously, I obtained a Bachelor of Science degree from Stony Brook University in both applied 

mathematics and pure mathematics .

I’m interested in Neural Operators, Equivariant Neural Networks, Generative (Probabilistic) Models, 

and AI for Science in general; I’m also broadly interested in Machine Learning, discrete math, and 

many other topics in applied mathematics and computer science.

Homepage: https://wenhangao21.github.io/

https://jacoblau0513.github.io/
https://www.stonybrook.edu/
https://www.stonybrook.edu/commcms/ams/
https://www.stonybrook.edu/commcms/ams/
http://www.math.stonybrook.edu/
https://wenhangao21.github.io/


Science at Different Scales
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AI for Science (AI4Sci)
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AI4Sci refers to the use of recent advances in artificial intelligence and deep learning to solve problems in natural 

sciences: computational chemistry, PDEs, material science, drug design, etc..



Best Time for AI4Sci
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Nobel Prize in Physics → AI

AI pioneers John J. Hopfield and Geoffrey E. Hinton for their contribution to AI and ML



Best Time for AI4Sci
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Nobel Prize in Chemistry → AI4Science

Demis Hassabis and John Jumper for their contribution to AlphaFold - protein structure prediction with AI



My Work: AI for Science (AI4Sci)
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Key mission:

• Integrate domain knowledge in science (such as symmetry) 

into AI models.

• Innovations in both AI and science.

• Analyzing existing AI models for scientific tasks.

Other perspectives:

• Explainability

• Large language models
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Symmetries in Physics

FYI: Dr. Chen Ning Yang received the Nobel Prize in physics (1957) for discoveries about symmetries, and his B.S. thesis is “Group Theory 

and Molecular Spectra”.
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Equivariance and Invariance

Invariance InvarianceEquivariance Equivariance



Talk Outline
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• Atomistic Systems

– Geometric Representation and Learning of Atomistic Systems

– The Trouble with ML and Symmetries

– Imperfect Scientific Data

– Explainability: Does AI Model Learn Science?

• Continuum Systems

– Continuum Systems and PDEs

– Physics-informed Neural Networks

– Operator Learning

– Symmetries in Continuum Systems

– Paradox in De-biasing from Discretization

• Future Works

– Robustness of Equivariant GNNs

– Unconstrained Molecular Generation
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Geometric Representation of Atomistic Systems

Representation of Atomistic Systems:

Molecules as 2D 

(planar) graphs

Molecules as 3D 

(geometric) graphs

➢ 3D geometric configuration (coordinates) is 

crucial in determining properties.

➢ 3D representations outperforms their 2D 

counterparts by a large margin.

Best 2D GNN

3D GNNs outperform 2D 

GNNs by a large margin 

(Lower, better)
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Geometric Graph Neural Networks

➢ A Fundamental tool for machine learning on geometric (3D) graphs for atomistic systems.

Image Source: A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems

Geometric Graph Prediction

• Functional properties?

• Ligand binding affinity?

• Ligand efficacy?

Geometric

GNN

➢ There are many other systems with geometric & relational structures beyond atomistic systems!
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The Trouble with ML and Coordinates

➢ The nature does not use coordinate systems. Coordinate systems have heavy human bias! 

➢ Us humans can use different coordinates to describe the same object.

➢ Predictions can be completely different!

Toxic Nontoxic 
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The Trouble with ML and Coordinates

3x3 matrix

moment of inertia

stress

strain

3 vector

forces

displacements

positions

3x3x3 tensor

Levi-Civita tensort

➢ Many physical properties contain directional information!

➢ The model must spend valuable model capacities to learn to de-bias (to learn symmetries) for reliable predictions!

Toxic Toxic 
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Equivariant Neural Networks

A better solution: Equivariant Neural Networks (ENNs)! ENNs guarantee symmetries by design!

ENN

ENN

Generalization and Efficient Learning: 

Geometric priors → smaller search space →

less parameters

less data

better generalization
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Scalarization and Spherical Tensor Networks

Scalarization Networks

❑ Use only invariant quantities as inputs.

❑ Can only be used for invariant tasks.

Spherical Tensor Networks

❑ Use directional quantities as features.

❑Must maintain directional information throughout.
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Imperfect Scientific Data

Ronast Subedi*, Lu Wei, Wenhan Gao*, Shayok Chakraborty, Yi Liu, Empowering Active 

Learning for 3D Molecular Graphs with Geometric Graph Isomorphism, NeurIPS, 2024

Motivation

❑Annotating scientific data is difficult!

Obtaining

Annotations

Experts High Cost Extensive Computation
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Learning with Less Data

What Can We Do?

❑ Select the most informative training samples to get labeled.

• Diversity: how a sample is different

from other Molecules?

• Uncertainty: how the model is

confident about a sample Molecules?

How?

Active Learning

Ronast Subedi*, Lu Wei, Wenhan Gao*, Shayok Chakraborty, Yi Liu, Empowering Active 

Learning for 3D Molecular Graphs with Geometric Graph Isomorphism, NeurIPS, 2024
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Challenges in Uncertainty Quantification

Challenges

❑ Different coordinate systems (human bias).

❑ Different Atom ordering (human bias).

❑ Different number of atoms.

❑ All existing uncertainty measures fail for geometric graphs!

1
2

3 4 2 3

14
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Ronast Subedi*, Lu Wei, Wenhan Gao*, Shayok Chakraborty, Yi Liu, Empowering Active 

Learning for 3D Molecular Graphs with Geometric Graph Isomorphism, NeurIPS, 2024
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Geometric Isometries

Isometries for Expressive Geometric Representations

❑We propose three isometries (< means less expressive) based on geometric priors: 

distance < triangular < cross-angle

❑ Used as basis for expressive representation of 3D molecular graphs.

❑ These isometries are E(3)-equivariant (Challenge #1).
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𝐴 and 𝐵 are triangular isometric but not cross-angular isometric

Ronast Subedi*, Lu Wei, Wenhan Gao*, Shayok Chakraborty, Yi Liu, Empowering Active 

Learning for 3D Molecular Graphs with Geometric Graph Isomorphism, NeurIPS, 2024
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Geometric Isometries

Expressiveness of Isometries

❑ Cross-angle isometries are at least as expressive as any geometric GNNs.

❑ They can distinguish any non-isometric structure a geometric GNN can distinguish.

Ronast Subedi*, Lu Wei, Wenhan Gao*, Shayok Chakraborty, Yi Liu, Empowering Active 

Learning for 3D Molecular Graphs with Geometric Graph Isomorphism, NeurIPS, 2024
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Geometric Isometries

Diversity Score Computing

❑ Different orders of statistical moments used to encode the isometries into a geometric descriptor (Challenges #2&3).

❑ Obtained descriptors are E(3)-equivariant and permutation invariant!

Ronast Subedi*, Lu Wei, Wenhan Gao*, Shayok Chakraborty, Yi Liu, Empowering Active 

Learning for 3D Molecular Graphs with Geometric Graph Isomorphism, NeurIPS, 2024
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Uncertainty Measures

Uncertainty Component

❑Will incorporate other chemical properties such as atom type.

The variational inference (VI) loss:

ℒVI θ = 𝑅𝑛− 𝑞θ 𝑤 log 𝑝3DGNN 𝑂 𝐺,𝑤 𝑑𝑤 + KL 𝑞θ 𝑤 |𝑝3DGNN 𝑤

is used to quantify molecules that the model has limited knowledge.

The predictive uncertainty for a new sample 𝑜∗ given 𝑔∗ :
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is used to obtain an uncertainty value (variance) for each molecule.

Ronast Subedi*, Lu Wei, Wenhan Gao*, Shayok Chakraborty, Yi Liu, Empowering Active 

Learning for 3D Molecular Graphs with Geometric Graph Isomorphism, NeurIPS, 2024
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Results and Broder Impact

Results
❑ Can learn with much less data: Achieves similar performance with only 5,000 samples compared to that of 10,000 

samples without our active learning selection.

❑ Can generalize to any atomistic data: We demonstrate that our method works well on QM9 (stable molecules), MD17 

(molecular dynamics trajectories), EC (protein) and can generalize well to all tasks from molecules to proteins to 

materials!

No more 

overtime!

Ronast Subedi*, Lu Wei, Wenhan Gao*, Shayok Chakraborty, Yi Liu, Empowering Active 

Learning for 3D Molecular Graphs with Geometric Graph Isomorphism, NeurIPS, 2024
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(Molecular) Graph Explanation
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➢ Identify key molecular substructures that influence the model's predictions.

➢ Allow domain experts to verify their alignment with chemical knowledge.

➢ There is a pressing yet often overlooked need for advanced explanation methods for 3D (geometric) GNNs.

Xufeng Liu, Dongsheng Luo, Wenhan Gao, Yi Liu, 3DGraphX: Explaining 

3D Molecular Graph Models via Incorporating Chemical Priors, KDD 2025

Xufeng Liu*, Wenhan Gao*, Yi Liu, Energy-Based Discrete Mask Appro-

ximation for 3D Molecular Graph Explanation, Under Review ICLR 2025



Talk Outline

29

• Atomistic Systems

– Geometric Representation and Learning of Atomic Systems

– Symmetries in Atomic Systems

– Imperfect Scientific Data

– Explainability: Does AI Model Learn Science?

• Continuum Systems

– Continuum Systems and PDEs

– Physics-informed Neural Networks

– Operator Learning

– Symmetries in Continuum Systems

– Paradox in De-biasing from Discretization

• Future Works

– Robustness of Equivariant GNNs

– Unconstrained Molecular Generation



30

AI for Continuum Systems: Neural PDE Solvers

➢ Continuum Systems: We assume a substance can be divided into ever smaller and smaller bits, so it always looks 

continuous!

➢ A PDE mathematically describes the behavior of continuum systems by prescribing constraints relating partial derivatives. 

Source for Navier-Stokes Animation: https://zongyi-li.github.io/blog/2020/fourier-pde/

Example: The Navier-Stokes Equation
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Traditional PDE Solvers PINN Neural Operators

➢ Solve one instance

➢ Require the explicit form

➢ Speed-accuracy trade-off on 

resolution

➢ Slow on fine grids; fast on coarse 

grids

➢ Suffers from the Curse of 

Dimensionality (CoD)

➢ Solve one instance

➢ Incorporate known physics

➢ Can train without data

➢ Mesh-free

➢ Can be slow to train

➢ Lessen the CoD issue

➢ Learn a family of PDEs

➢ Compatible with physics-

informed ideas

➢ Black-box, data-driven

➢ Can be resolution-invariant

➢ Slow to train; fast to evaluate 

(can be several orders of 

magnitudes faster)

➢ Many neural operators suffer 

from CoD
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PINNs (Solving One Instance)
Consider the following general form of a PDE for 𝑢(𝒙):

we wish to approximate 𝑢 𝒙 with a neural network, denoted by             . We can train the neural network with physics-

informed loss. That is, we aim to solve the following optimization problem:

Difference between the L.H.S. and 

R.H.S. of the differential equation. 

Intuition: We penalize the neural network by the extend to which it violates the PDE/boundary/initial conditions.
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Active Learning for High-Dimensional PDEs

➢ PINN still faces significant CoD issues in high-dimensions.

➢ Proposed an active learning approach based on an unnormalized distribution informed by physics to adaptively 

sample training collocation points to lessen CoD issues.

➢ Designed a parallelizable self-normalized algorithm (efficiently run on GPUs) to simulate the proposed distribution.

Wenhan Gao, Chunmei Wang,  Active Learning Based Sampling for High-Dimensional 

Nonlinear Partial Differential Equations, The Journal of Computational Physics (JCP) 2023 
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Neural Operators (Solving a Family of PDEs)

▪ In numerous fields, we seek to study the behavior of physical systems under various parameters.

▪ Neural operators approximate the mapping from parameter function space to solution function space.

▪ Once trained, obtaining a solution can be several orders of magnitude faster than numerical methods.
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Operator Learning Essentials
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Applications of Operator Learning

Computational Fluid Dynamics [a] Carbon Storage Modeling [b] Weather Modeling [c]

[a] Geometry-informed neural operator for large-scale 3D PDEs. arXiv, 2023. Zongyi Li, et al..

[b] Fourier-MIONet: Fourier-enhanced multiple-input neural operators for multiphase modeling of geological carbon sequestration. arXiv, 2023. 

Zhongyi Jiang, et al..

[c] DeepPhysiNet: Bridging deep learning and atmospheric physics for accurate and continuous weather modeling. arXiv, 2024. Wenyuan Li, et 

al..
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Weather Forecasting: FourCastNet

❖ Motivation: Climate change is making storms both stronger and less 

predictable, leading to more frequent natural disasters.

❖ Task: Emulate the dynamics of global whether patterns and 

predict extreme whether events like atmospheric rivers.

❖ Training Data: 10TB of earth system data from the past.

❖ Input: The current state of atmospheric fields.

❖ Result: Predict the precise path of catastrophic atmospheric 

rivers a full week in advance, with only a fraction of a second on 

powerful GPUs.
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A Challenge in Operator Learning

Deep neural networks can only take finite-dimensional inputs and produce finite-dimensional outputs:

Finite-dimensional Features

ContinuumDiscreteness

Infinite-dimensional Features



Finite-Dimensional Features and Learning

To adapt neural networks to learn operators, a workaround is to use a simplified setting in which functions are characterized by finite-

dimensional features.

Input function

Encoder

Uniform Sampling 

Finite dimensional 

input features

Approximator

CNN-based Networks

Finite dimensional 

output features

Reconstructor

Interpolation

Solution function

42



Finite-Dimensional Features and Learning
Many numerical schemes can be represented by this diagram as well:

Input function

Encoder

Finite dimensional 

input features

Approximator

Finite dimensional 

output features

Reconstructor

Solution function

How we make choices of encoders, reconstructors (decoders), and approximators gives rise to different neural operators. 

Moreover, different choices may lead to different properties or various pros and cons for a particular neural operator.

43



Finite-Dimensional Learning: Summary

There have been a lot of work done in this direction, and to name a few:

[1] Spectral Neural Operators. V. Fanaskov, I. Oseledets

[2] Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Lu Lu et al. NMI, 2021.

[4] Model Reduction And Neural Networks For Parametric PDEs. The SMAI Journal of computational mathematics, Volume 7 (2021), pp. 121-157. Kaushik Bhattachary et al..

[5] Integral autoencoder network for discretization-invariant learning. JMLR, 2022. Yong Zheng Ong, Zuowei Shen, and Haizhao Yang

[6] Operator learning with neural fields: Tackling PDEs on general geometries. arXiv, 2023. Louis Serrano, et al..
44



Infinite-Dimensional Learning: Introduction

For finite-dimensional models, the network is highly dependent on the resolution of the data and/or sensor locations. 
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➢ Discretization is also a human-bias!

➢ The network should be independent of the discretization of the functions.

➢ Learned parameters should be transferable between discretizations.

➢ Learns continuous functions instead of discretized vectors.

In CNN-based methods, fixed size kernels converge to a 

point-wise operator as the resolution increases.



Kernel Integral Operators
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Why this is less dependent on the discretization? Numerical integration which will converge, under fairly general conditions, to the true 

integral.

In a standard deep neural network, a layer can be written as:

Here the input, 𝑣𝑡, and the output, 𝑣𝑡+1, are both vectors.

However, we wish to learn continuous functions instead of discretized vectors. We need to adjust the formulation of our linear layers as it 

must be able to take functions as input:



Kernel Integral Operators: FNO
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FNO is widely recognized kernel integral operator [8], stands out for its efficiency and precision.  

“Filters in convolution neural networks are usually local. They are good to capture local patterns such as edges and shapes. Fourier 

filters are global sinusoidal functions. They are better for representing continuous functions.”

[8] Fourier neural operator for parametric partial differential equations. ICLR, 2021. Zongyi Li, et al..

Image Source: Stanford CS159: Representation Learning for Science
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Symmetries In Continuum Systems
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Wenhan Gao, Ruichen Xu, Hong Wang, Yi Liu, Coordinate Transform Fourier Neural Operators 

for Symmetries in Physical Modelings, TMLR 2024

➢ Symmetry group of a PDE: Characterizes the transformations (e.g., rotations, reflections, translations, scaling) under 

which solutions remain solutions.

➢ Symmetry priors: Encode symmetries into architectures to make learning easier and improve generalization

Example: Solutions are still physically consistent after rotation



Coordinate Transforms and Symmetries
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❑ Coordinate transformations change the mathematical description but maintain physical properties.

❑ Some symmetries can become manifest in a new coordinate system.

❑ Symmetries are preserved in another coordinate system.

Wenhan Gao, Ruichen Xu, Hong Wang, Yi Liu, Coordinate Transform Fourier Neural Operators 

for Symmetries in Physical Modelings, TMLR 2024



Results and Broader Impact
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❖ Generalization: Can adapt to various domains commonly encountered in engineering and natural sciences.

❖ Theoretical Guarantees: Can approximate the behavior of an operator to any desired precision.

❖ Maintaining Symmetries: When symmetries exist,  can reduce the error from as large as 31.942% to 0.402%

Wenhan Gao, Ruichen Xu, Hong Wang, Yi Liu, Coordinate Transform Fourier Neural Operators 

for Symmetries in Physical Modelings, TMLR 2024
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Human Bias in Representing Functions
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Wenhan Gao, Ruichen Xu, Yuefan Deng, Yi Liu, Discretization-invariance? On the 

Discretization Mismatch Errors in Neural Operators. Under Review ICLR 2025

➢ Discretization is also a human bias.

➢ Neural operators remove the dependence on the discretization.

➢ However, they still suffer from the discretization mismatch errors.



Discretization Mismatch Errors
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➢ Discretization Mismatch Errors (DMEs) quantifies the discrepancy between the outputs of the neural operator 

when using different discretizations. 

➢ The network introduces DMEs and DMEs propagate through each layer even if the inputs do not observe any DMEs.

Wenhan Gao, Ruichen Xu, Yuefan Deng, Yi Liu, Discretization-invariance? On the 

Discretization Mismatch Errors in Neural Operators. Under Review ICLR 2025



Accumulation of DMEs
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➢ Numerical experiments reveals the accumulation of DMEs through network layers and time steps.

Wenhan Gao, Ruichen Xu, Yuefan Deng, Yi Liu, Discretization-invariance? On the 

Discretization Mismatch Errors in Neural Operators. Under Review ICLR 2025



Results and Broder Impact
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➢ CROP reduces the cross-resolution (super-resolution) error of FNO from as high as 9.45% to 0.54%.

➢ Multi-spatio-learning feature improves performance on difficult learning tasks such as the NS equation under high 

Reynolds number (turbulent flow with small-scale features). 

More regional information as we refine the resolution

Climate modeling exhibits turbulence and small-scale features

Wenhan Gao, Ruichen Xu, Yuefan Deng, Yi Liu, Discretization-invariance? On the 

Discretization Mismatch Errors in Neural Operators. Under Review ICLR 2025
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Publications

*Equal Contribution

• Ronast Subedi*, Lu Wei, Wenhan Gao*, Shayok Chakraborty, Yi Liu, Empowering Active Learning for 3D Molecular Graphs with Geometric Graph 

Isomorphism, NeurIPS, 2024

• Wenhan Gao, Ruichen Xu, Hong Wang, Yi Liu, Coordinate Transform Fourier Neural Operators for Symmetries in Physical Modelings, TMLR 2024

• Wenhan Gao, Chunmei Wang,  Active Learning Based Sampling for High-Dimensional Nonlinear Partial Differential Equations, The Journal of 

Computational Physics (JCP) 2023

• Xufeng Liu, Dongsheng Luo, Wenhan Gao, Yi Liu, 3DGraphX: Explaining 3D Molecular Graph Models via Incorporating Chemical Priors, KDD 2025

Preprints

• Wenhan Gao, Ruichen Xu, Yuefan Deng, Yi Liu, Discretization-invariance? On the Discretization Mismatch Errors in Neural Operators. Under Review 

ICLR 2025

• Xufeng Liu*, Wenhan Gao*, Yi Liu, Energy-Based Discrete Mask Approximation for 3D Molecular Graph Explanation, Under Review ICLR 2025

• Wenhan Gao, Jian Luo, Yi Liu, Dynamic Schwartz-Fourier Neural Operator for Enhanced Expressive Power, Under Review CVPR 2025

Awards

• Excellence in Teaching (Fall 2023; AMS 595 Fundamentals of Computing; Independent Leading Instructor)

• NeurIPS Scholar Award (2024)
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